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SEMESTERII

Course |

Course Name: Ordinary Differential Equations (ODE) Course Code: BAMAT-201

Course

Objectives:

The main objectives of this course are to introduce the students to
the exciting world of Differential Equations and their applications.

Unit 1:

Formation of differential equation, Degree, order and solution of
a D.E., Ordinary differential equations of first order: initial and
boundary conditions,Seperation of variables method, homogeneous
equations:equation reducible to Homogeneous Form, linear equations,
Equation reducible to homogeneous form

Unit 2:

Exact differential Equation. Necessary and sufficient condition for exact
differential equation, First order higher degree equations solvable for
X, Y, p. Singular solution and envelopes,Clairaut’s equation,Equation
Reducible to Clauriat,s form.

Unit 3:

Linear differential equations with constant coefficients; Determinaton of
C.F. and the P.I., homogeneous linear differential equations, Determinaton
of C.F. and the P.l., linear differential equations of second order with
variable coefficients,

Unit 4:

Series solutions of differential equations. Introduction Frobenious Method
Solution near an ordinary point and a regular singular point, Method of
differentiation, Bessel and Legendre equations. Solution of Legendre
equation, Defination of Legendre polynomials, Bessel and Legendre
functions.

Course Learning Outcomes: The course will enable the students to:

. Formulate Differential Equations for various Mathematical models.

Solve first order non-linear differential equation and linear differential equations of higher
order using various techniques.
Apply these techniques to solve and analyze various mathematical models.

References:

1.

Barnes, Belinda & Fulford, Glenn R. (2015). Mathematical Modelling with Case Studies,
Using Maple and MATLAB (3rd ed.). CRC Press, Taylor & Francis Group.

Edwards, C. Henry, Penney, David E., & Calvis, David T. (2015). Differential Equation and
Boundary Value Problems: Computing and Modeling (5th ed.). Pearson Education.
Ross, Shepley L. (2004). Differential Equations (3rd ed.). John Wiley & Sons. India






1. DIFFERENTIAL EQUATIONS

STRUCTURE

Differential Equation

Formation of a Differential Equation Whose

General Solution is Given

Solution of a Differential Equation

Initial Value Problem

Solution of a Differential Equation by the Method of Separation of Variables

Homogeneous Differential Equations and their Solution

DIFFERENTIAL EQUATION

An equation involving independent variables, dependent variables and at least one
derivative/differential of these variables is called a differential equation.
The following are some of the examples of differential equations:

dy

l‘aleogx 2. dy =cos x dx
gy Ay o dy 1+(d_yf
T2 dx TN YTV T dx )

Order and Degree of a Differential Equation

The order of a differential equation is the order of the derivative of the highest order,
occurring in the differential equation.

Consider the differential equation

3
3%+%+y=sinx‘
x x

Differential Equations

NOTES
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Ordinary Differential 3

Equations The highest order derivative occurring in this equation is Y

5 and its order

dx
1s 3.

NOTES Order of given differential equation is 3.

The degree of a differential equation is defined if it can be written as a
polynomial equation in the derivatives and for such a differential equation its degree
is given by the highest power of the highest order derivative appearing in it, provided
the derivatives are made free from radicals and fractions.

Consider the differential equation

dy dy)
2=+ 3,/1+2 (1
YT ’ (dx M
This equation is not free from radicals.
dy dyj
1 -2 =3.1+2
1 = Yoo (dx
dy dy)
=9/ 1+2
= (y deJ [ + (dx ]
= 2+4(dy) _ 9—18(dy) =0
dx dx dx
= 14(dy) +4yﬂ—y2+9=0
dx dx
dy

The highest order derivative in this equation is Ir and its highest power is 2.
x

Degree of given differential equation is 2.

Linear Differential Equation

A differential equation is said to be linear, if the dependent variable and its derivatives
occur only in the first degree and are not multiplied together.

In general, a linear differential equation of order n is of the form

n n-1
Pody+P1d 31)+..+P ld +Py=Q,
dx" dx"~ dx
where P, P, ...,P, |, P . Q are functions of x or constants.

In particular, a linear differential equation of order one is of the form

d
ay +Py=Q.
x
: : . d . d? :
The differential equations: cos x % +ysinx=1 and d_JS/ + % = x? log x are linear
X

differential equations.
A differential equation which is not linear is called non-linear.
The degree of a linear differential equation is always one. But, the converse is

d . . o .
not true. For example, the degree of yd—z+7=smx is one and it is not a linear

differential equation.

2 Self-Instructional Material



SOLVED EXAMPLES

Example 1. Determine the order and degree, if defined, of the following
differential equations. State also, if these are linear or non-linear:

3

.. dy dy
YL 1+
@y dx " +[dx) '

dy _ (1+y*)A+x+x%)

- d I+yH)T+x+x2)
(L)xy_y: B4 5
dx I1+x

Solution. (i) The given differential equation is

x —
Y dx 1+x2
Order of the highest order derivative Z—y is 1.
X

Highest power of the highest order derivative Z—y is 1.
X

Order and degree of the given differential equation are 1 each.

The given differential equation is non-linear, because y and % are multiplied

together.
. . . ‘ o dy dy Y’
(1) The given differential equation is y = —— + ,[1+| == . )]
dx dx
. .. dy .
Order of the highest order derivative I 8 1.
3 2 3
dy dy dy dy
- — = 1 —_ _— = —
@M =y dx +(dx) = (y dx) 1+(dx)
This is expressible as a polynomial in j—y
X

Highest power of the highest order derivative ay is 3.
X

Order and degree of the given differential equation are 1 and 3 respectively.

The given differential equation is non-linear because % is multiplied by itself.

EXERCISE A

Determine the order and degree, if defined, of the following differential equations. State also, if
these are linear or non-linear (¢ No. 1-4):

2
) dzy dy)4 . [ dy 4 d?
1. 1= +x| 22| =0 ety [ )
@) x (dsz x(dx 2)) (dx) x d

2
3
. [ dy * d?y [ d%y dy *
@i1) (—) +3y=—= =0 v) | 22 2 +x%=0
dx Y dx? dx? Yy dx
2
‘ dy\*  d%y o dy (Y d’y
. 5| 2| 422 _6y=1 Can i ad
20 x(dx) a? B WYz ) =% @

2
(iv)yzx&+a 1+(ﬂJ
dx

i) 2 =2y " —y'+1=0
() y V' =y I

Differential Equations

NOTES
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Ordinary Differential

3/2
E ti 2 2
quations 3 @) [14-(%) } :5% (1) /1—x2 dx+ /1_y2 dy=0
4 2
NOTES @@ir) (E) + 3s d_zs =0 @) y = px + 1[(3;2192 + b2, where p= &
dt dt dx
d4y d?y ? dy
. ) —= + si "y = ) |—5 | tcos|—|=
4 @) 7ot +sin(y”) =0 @1) [dxz (dxj
(i) (V)2 + O+ O =0 () ¥+ )R+ 2y =0,
5. Write the sum of the order and degree of the following differential equations:
d |(ay)? . d% L [dy
— = +t=0 —+3—+1+x)=0.
@) T {( dx) } @) 2 T\ dx A+ x)
Answers
1. (@) Order =2, degree = 2, non-linear (1) Order = 2, degree = 1, non-linear
@@ir) Order = 2, degree = 1, non-linear (iv) Order = 2, degree = 3, non-linear
2. (1) Order = 2, degree = 1, non-linear (1) Order = 3, degree = 2, non-linear
@@ir) Order = 2, degree = 2, non-linear (iv) Order = 1, degree = 2, non-linear
3. (1) Order =2, degree = 2, non-linear @@1) Order = 1, degree = 1, non-linear
@@ir) Order = 2, degree = 1, non-linear (iv) Order = 1, degree = 2, non-linear

4. (1) Order = 4, degree not defined, non-linear
(1) Order = 2, degree not defined, non-linear
@@ir) Order = 3, degree = 2, non-linear
(iv) Order = 2, degree = 1, non-linear

5. ()3 (ii) 5.

FORMATION OF A DIFFERENTIAL EQUATION WHOSE
GENERAL SOLUTION IS GIVEN

If we have an equation between two variables, involving arbitrary constants,
then these arbitrary constants can be eliminated by using derivatives and as a result,
a differential equation is formed whose solution is the given equation.

I. Method of Forming a Differential Equation

To form a differential equation from a given equation in x, y and containing
arbitrary constants, the given equation is differentiated w.r.t. x successively as many
times as there are arbitrary constants. These equations are used to eliminate the
arbitrary constants. The equation obtained by eliminating the arbitrary constants is
the required differential equation.

In general, if the equation between two variables contains n arbitrary constants,
then the differential equation, obtained by eliminating these arbitrary constants, will
be of order n.

4  Self-Instructional Material



Remark. The following are some of the important results of coordinate geometry which
are used in this section.

1. Equation of non-vertical line is y = mx + ¢, where m and ¢ are arbitrary constants.

2. Equation of a non-vertical line passing through the origin is y = mx, where m is
arbitrary constant.

3. Equation of the circle having centre (h, k) and radius ris (x — h)? + (y — k)> = r2.
4. Equation of circle in the general form is x2+y%+2gx+ 2fy +¢=0. Its centre and

radius are (- g, —f) and /g2 + f2 — ¢ respectively.

5. Equation of a circle passing through the origin is x% + y2 + 2gx + 2fy = 0, where g and
[ are arbitrary constants.

6. Equation of a circle passing through the origin and having centre on the
x-axis is (x — a@)® + y2 = a?, where a is arbitrary constant.

7. Equation of a circle passing through the origin and having centre on the
y-axis is x* + (y — a)® = a?, where a is arbitrary constant.

8. Equation of a parabola with axis parallel to the x-axis is (y — k)> = 4a(x — h), where a,
h and k are arbitrary constants.

9. Equation of a parabola with axis parallel to the y-axis is (x — h)2 = 4a(y — k), where q,
h and k are arbitrary constants.

10. Equation of an ellipse having centre at the origin and axes along the coordinate axes
x2 2
is —5 +b—2 =1, where @ and b are arbitrary constants.
a

Working Steps for the Formation of Differential Equations

Step I.  Write the given equation.

Step II. Count the number of distinct arbitrary constants present in the given
equation.

Step II1. Differentiate the given equation successively as many times as the
number of arbitrary constants.

Step IV. Eliminate the arbitrary constants by using the given equation and
equations obtained in the step III. The equation so obtained is the
required differential equation.

SOLVED EXAMPLES

Example 2. Form the differential equation of the following families of curves:

() y = mx, where m is an arbitrary constant.

@) (x — a)? + 2y =a?, where a is an arbitrary constant.

Solution. (1) We have y = max.

dy
X

Differentiating (1) w.r.t. x, we get 4

=m

Elimination of m. Putting the value of m in (1), we get y= (%J x.

This is the required differential equation.
@) Wehave (x—a)?+2y2=a? ie, x?—2ax+2y2=0

Differentiating (1) = 2x—-2a+4yy =0 = a=x+2yy

(1)

(D)

Differential Equations

NOTES

Self-Instructional Material
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Ordinary Differential
Equations

NOTES

Elimination of a. Putting a =x + 2yy” in (1), we get
X2 —2(x+ 2yy)x+ 292 =0

= X2 — 202 —4xyy + 292=0 = 4dxyy +x2-2y?=0
= 4xy % + x2 - 292 = 0. This is the required differential equation.

Remark. The differential equation obtained for each system in the above example is of
order ‘one’. This is so, because each system contained only one arbitrary constant.

6  Self-Instructional Material

Example 3. Form the differential equation of the following families of curves:

} B )
@) y=Ax+ e where A, B are arbitrary constants.

@) y = Ae3* + Be®*, where A, B are arbitrary constants.

B
Solution (1) We have y=Ax+ <
= xy =Ax?+ B (D)
d
Differentiating (1) w.r.t. x, we get x% +y-1=A-2x+0
dy _
= X +y=2Ax (2

2
Differentiating (2) w.r.t. x, we get xd—g + dy. 1)+ b 2A - 1.
dx® dx dx

dy+2d =2A
dx dx

Elimination of A and B. Putting the value of 2A in (2), we get

dy d2 dy
+ —5 t2—=

=

2
= x? % +x % —y=0. This is the required differential equation.
x
(11) We have y = Ae®* + Be™, LD
dy
Differentiating (1) w.r.t. x, we get d_ = 3Ae + 5Bed (2
. _ . d?y . .
Differentiating again i 9Ae>* + 25Bed* ..(3)
Elimination of A and B.
d’y 1d% 5 dy
_ _r X - __ 3x _ z 3x
B)-52) = dx 5 6Ae* = 6 du? + 6 dr Ae
d?y dy - 1d% 3 dy -
B-3@) = 5 -39 =108 = oG -0 =Be
2 1 42
- (1) - y= _ld_zﬁréﬂ 4 1dy 3 dy
6 dx* 6 dx 10 dx 10 dx
_ dly o dy o dy dy




2 Differential Equations
- 29 16D L 300=0
de dx

2

= d y2 -8 dy + 15y = 0. This is the required differential equation.
dx dx NOTES
Alternative Method

We have y = Ae®* + Be®™. (D
1 = ¥, = 3Ae3* + 5Be (2
@ -31) = v, — 3y = 2Be™ NG)
B) = y,—3y,=10Be™ = y,—3y,=5(,-3y) = y,—8y, +15y=0

2
= d’y _ 8 dy + 15y = 0. This is the required differential equation.

dx? dx

Remark The differential equation obtained for each system in the above example is of
order two’. This is so, because each system contained two arbitrary constants.

Example 4. Form the differential equation of the following families of curves:
(@) y = ae* + be® + ce™>, where a, b, ¢ are arbitrary constants.

@) x2 +y2 + 2ax + 2by + ¢ = 0, where a, b, ¢ are arbitrary constants.

Solution (i) We have y = ae® + be?* + ce (D
1 = ¥, = ae” + 2be?* — 3ce™* (2
-1 = ¥, —y = be* — 4ce™™ ..(3)
3) = Yy — ¥, = 2be?* + 12¢ce™ (4@
1) -203) = Yy =¥y — 207, ) = 20ce

= ¥y — 3y, + 2y = 20ce™ ..(B)
B) = ¥ — 3y, + 2y, =—60ce™ ...(6)
6) +30) = y3-3y,+ 2y, 30, -3y, +2y)=0

= vy, — Ty, +6y =0

= 4’y -7 dy + 6y = 0. This is the required differential equation.

dx’ dx

(it) We have x? + y? + 2ax + 2by + ¢ = 0. (1)
Differentiating (1) w.r.t. x, we get 2x + 2yy, + 2a + 2by, + 0= 0.

= x+yy, tat+by, =0 .2
Differentiating (2) w.r.t. x, we get 1+ @y, +yy)+0+by,=0

= by, =—(1+yy, +y,9) ..(3)
Differentiating (3) w.r.t. x, we get by, =—O+yy, +yy,+ 2y,5,)

= by, =—(y, + 3y.y,) .4

.. . C . b - 2
Elimination of a, b and c. Dividing (3) by (4), we get byp _ =+ yys +51)
by —(yys +3y1¥s)
¥y _ Lyye +37
Y3 YYs+3¥1ye
= BYY5 =¥+ Y1y, = (1+y)y;—3yw5=0

= YYoYs T BV YE=Ys t YYoYs T ¥y,

Self-Instructional Material
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Ordinary Differential 9 2 \2
Equations . |:1+(ﬂ) :l d3y _3ﬂ(dyj -0

dx dx? dx | dx?
This is the required differential equation.
NOTES

Remark The differential equation obtained for each system in the above example is of
order ‘three’. This is so, because each system contained three arbitrary constants.

Example 5. Form the differential equation of all lines in a plane which are at a
constant distance p from the origin.

Solution. The distance of the lines of the
family from the origin is p. Let L be a line of this L\
family. Draw OK perpendicular to this line. Let OK
make angle o with the x-axis.

The equation of the line L is K
X COs oL+ ysin o =p. 5
= xcosotysmo—p=0 (1) .
Differentiating (1) w.r.t. x, we get X O \ »
cosa+y sinoa—-0=0 ..(2) v
Solving (1) and (2), we get
coso. _ sino 1
O+pyy -p-0 xy -y
coso=—2_ and sino=—2>
X1 =Y X~y
We have cos? o+ sin? o0 = 1.
2 2
XY -y 11—y
= PPy + p* = (ay; — y)?
= Pyl + 0% =2%y] + 7 - 2xyy

= (p* = x*)yi +2xyy, + p* =y =0

= (p? 2 dy2 dy 2 2 _
p —x)a +2xy£+p -y=0.

This is the required differential equation.

Example 6. Form the differential equation of the system of circles touching the
x-axis at the origin. v
Solution. The circles in the system will have their
centres on the y-axis. Let (0, a) be the centre of a circle

touching the x-axis at the origin. lal
The radius this circle must be | a|*, otherwise the (0. 2)4
circle will not touch the x-axis.
The equation of the system of circle is
(- 02+ (- = (lal)? Y X

or x?+y? —2ay =0, where ais an arbitrary constant.

*Why this step If the centre of the circle is below the origin, then ‘@’ is negative. For
such a circle, the radius of circle is —a, which is equal to |a].

8 Self-Instructional Material



Differentiating w.r.t. x, we get
2x + 2yy, — 2ay, =0 ..(D
Elimination of a.

+
1 = q=2T
Nal
Putting the value of a in x? + y? — 2ay = 0, we get

+
x% + y? —2[—x yley=0‘
N

= yp+ 2y - 20y —2y%y1 =0 = (6% - y®)y; = 2xy

d . ) ) . )
(x2 - y?) d_y = 2xy. This is the required differential equation.
x

Remark. This differential equation also represent the system of circles passing through
the origin and having centre on the y-axis.

Example 7. (1) Form the differential equation of all parabolas with latus rectum
“4a’ and whose axes are parallel to the x-axis.

(1) Form the differential equation of all parabolas whose axes are parallel to the
Yy-QXlS.

Solution. (i) The equation of a parabola with latus rectum ‘4a’ and axis parallel
to the x-axisis

(y — k)? = 4a(x — h), (D
where h and k are arbitrary constants.
Differentiating (1) w.r.t. x, we get

20—k —=0)=4a(1 -0) 1i.e, (y—-ky =2a (2
Differentiating (2) w.r.t. x, we get

y—hy + @ -0y =0 e, y—Fk= y” ..(3)
y
Elimination of h and k.
’2 2 3
2) and 3) = y” .y =2a = ZaM— dy =0.
y dx? | dx

This is the required differential equation.

(11) The equation of a parabola whose axis is parallel to the y-axis is given by

(x—h)?=4aly-Fk), (D)
where h, k and a are arbitrary constants.
Hn = 20x —h)(1-0)=4a(y’-0) = x—h=2ay
= 1- 0= 2ay” = 0=2ay” = y”=0
¢ a#0)
3333’ =0. This is the required differential equation.
x

Differential Equations

NOTES

Self-Instructional Material
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Ordinary Differential Example 8. Form the differential equation representing the family of ellipses
Equations having foct on the x-axis and centre at the origin.

Solution. Let the equation of the family of ellipses be

X
NOTES el (1)

where a and b are parameters and a > b > 0.
Differentiating (1) w.r.t x, we get

2% 2yy’ yy’ b2
— + =0 =—— .2
a? b2 = x a? @

Differentiating (2) w.r.t. x, we get
alyy"+yyl-yy-1 _

e, xyy +xy%—yy =0.

xz
d’y dy)> dy
= xy dx2+x(a) ‘ya=0‘

This is the required differential equation.

EXERCISE B

1. Form the differential equation of the family of curves given by:
@) y=hkx+Rk>+ k3 @) y + A sin x=0.
2. Form the differential equation of all straight lines passing through the origin.

3. Form the differential equation of the family of all non-vertical lines y = mx + ¢, in the
xy-plane.

4. (i) Form a differential equation of the family of curves y = a sin (bx + ¢) where a and ¢
being arbitrary constants.

(1) Form a differential equation of the family of curves y = a sin (bx + ¢) where a, b and ¢
being arbitrary constants.

5. Obtain a differential equation that should be satisfied by the family of concentric circles
2 +y2=a?
6. Form a differential equation of the family of circles given by x2 + y2 = 2ax.
7. Form the differential equation of the family of curves given by:
(1) y = Ae2r + Be 2 @) y = ax + bx?

(111) xy = C cos x (iu)y:é_’_B,
r

8. Form the differential equation of the family of curves given by:
(@) y = e“(a cos x + b sin x), where @ and b are arbitrary constants.
@i1) xy = Ae* + Be* + x2, where A and B are arbitrary constants.
@11) y* = a(b — x?), where a and b are arbitrary constants.
(iv) y = e**(a + bx), where a and b are arbitrary constants.
9. (i) Form the differential equation of the system of circles touching the y-axis at the origin.

(i1) Form the differential equation of the system of circles which passes through the origin
and having centres on the x-axis.

10. (1) Form the differential equation of all circles in the first quadrant which touch the
coordinate axes.

10 Self-Instructional Material



11.

12.

13.
14.

15.

16.

17.

=

&

®

10.

o

11.

[

12.

3]

(1) Form the differential equation of all circles in the second quadrant and touching the
coordinate axes.

(1) Form the differential equation of the family of circles of radius 2 units and having
centre on the x-axis.

(@1) Form the differential equation of the family of circles having centre on the
y-axis and radius 3 units.

() Form the differential equation of the family of circles (x—a)? + (y — b)> = r? by eliminating
a and b.
(i1) Form the differential equation of the family of circles having radii 3.
Form the differential equation of all circles in the xy-plane.

(1) Form the differential equation of the family of parabolas having vertex at the origin
and axis along the positive y-axis.

(1) Form the differential equation of the family of parabolas having vertex at the origin
and axis along the positive x-axis.

Form the differential equation of the family of ellipses having foci on the y-axis and centre
at the origin.

Form the differential equation of the family of hyperbolas having foci on the x-axis and
centre at the origin.

Show that the differential equation of which x% — y2 = ¢(x? + y%)? is a solution is
(23 — 3xy?)dx = (y? — 3x2y) dy.

Answers
3
(l)y—x%'i'(ji) +(%) (ii)%Zycotx
d2
y=xd—y 3.ﬁ=o
i dy d?y dy
@ ‘;j +b%y=0 (u)y 3 dx =0
dy dy
+ 0 2L x2 2 =
x ydx 6.2xydx+x y2=0
2 2
@) j——@ 0 (ii)xzj—‘;}—Zny+2y 0
x X
2
) x%+y+xytanx=0 (w)rjy+zji 0
2 2
(i)%— Zy+2y 0 (u)x%+2§y—xy—x2+2
X X X
2 d? d
(1) xy%+x(j§) —y%:O (tv) dxg_ dy+4 =0
X
® 2963’ oy -y2= (1) 2xy% +x2-92=0
X
2 2 2
d .
@ (x- yﬂ( ( )] ( Z%) Ow(x+yﬁll+(%%)}=(x+y5%)
2
0) y‘{ J (i) 2 - 9) (%) +x2=0

or{f @] ol el

Differential Equations

NOTES

Self-Instructional Material
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Ordinary Differential
Equations

NOTES

@i1) y* — 2xy b 0
dx

d2y dy dy d2y dy Y dy
15, oY .|| -, — 16. oy &Y L B _ D~
Y ? x(dx Y ydx2+x(dx Y dx
Hints
dy dy
2. y=mx = —=m = =x—=.
yome dx Y dx
4. ()y=asin(bx+c¢) = y =abcos (bx+c) = y,=—ab?sin (bx+c)=-bZy
= y2+b2y=0‘
(@ y=asin(bx+c) = y,=abcos(bx+c) = y,=—ab?sin (bx+c)
= y,=—ab?®cos (bx +¢)
Y= b%y and y,=-bYy, = 2228 o gy =y
Nal

8. (1) y=e*(acos x+ b sin x)
= y,=e“(acos x+bsin x) + e*(— asin x + b cos x)
= y,=y+e(—asinx+ b cosx)
= y,=y;te' (—asinx+ bcosx)+ e“(—acos x— b sin x)
= D=0t -ty = ¥, -2y, +2y=0.
(i) xy=Ae* +Be* +x? = xy +y=Ae"—Be®+2x
= (@,+ty)+ty, =Ae*+BeMH+2 = xy, + 2y, =(xy—xH)+2.
() y*=ab-5?) = 2y, =a(-2x) = yy, =-ax

yy
= W, ty,.y,=-a Yy, +y ==L
x
10. (1) Let the equation of the circle be
(x—a)®+ (y— a)®> = @?, where a is an arbitrary constant. Y
2—a) +2(y—a)y, =0 a>0
X+
= x—atyy,—ay; =0 = XTI
1+y,

Putting the value of ‘@’ in the equation of circle, we get

a —T(a, a)
a

2 2 2
X+ yy; X+ yy; X+ yyq
x——=| +|y- =
1+y1 1+y1 1+y1

= (@t+ay, —x—yy)?+ @y, —x—yy)? =@+ yy)?
= yE(x—-yi+ (y—x2=(x+yy)>

11. (ii) Let the equation of family of circles be
(x—0)2+ (y—a)2=9.

o

2
= 2x+2(y—-a)y' =0 = y_a:_i QO = 2+ x =9,
y' yzZ
12. (i) We have (x—a)?+ (y—b)2=r2

@ H = 2(x—a) +2(y — by, =0
(2) = 2+2(}’—b)y2+2(}’1)y120
2
@ = y-b=-IA g
Y2
1+ 2 + 3
@ = x—aZ—(y—b)yI:( y1]y1=y1 Y1
Yo Yo

Now put the values of x —a and y — b in (1).

12 Self-Instructional Material
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13. The equation of a circle in xy-plane is

2 +y>+2gx+ 2fy + ¢ =0, where g, f, c are arbitrary constants. .. (1)
1) = 2x+2yy,+2g+2fy,+0=0 = x+yy, tg+[fy,;=0 .. (2)
Q2 = 1+yy,+y2+0+fy,=0 = @+[)y,+y2+1=0 .3
B =20+ Ny + Yy, + 2y, +0=0 = @+ [)y;+3y,y,=0 ()

Multiply (3) by y,, (4) by y, and subtract.
14. (1) Take «2=4ay as the equation of the family of parabolas.

2 2
15. Take x_z + y—z =1,a>b>0 as the equation of the family of ellipse.
b a
JCZ yZ
16. Take — — b_2 =1 as the equation of the family of hyperbolas.
a
17. We have  x2—y2=c(x2+ y?)2. ..(1)
1) = 2x-2yy, =c.2(x% + yH)(2x + 2yy,)
= x—yy, =2c@®+ yHx+yy,) (2

Divide (2) by (1) and simplify.

SOLUTION OF A DIFFERENTIAL EQUATION

A solution of a differential equation is a functional relation between the variables
involved which satisfies the given differential equation.

A solution of a differential equation is called the general solution (or complete
solution), if it contains as many arbitrary constants as the order of the differential
equation.

Illustration y = Cx* is the general solution of the differential equation

X @ 4y =0, because the general solution contains one arbitrary constant ‘C’ and the

dx
order of the differential equation x Z—y — 4y =0 1s also ‘one’.
X
A solution obtained by giving particular values to arbitrary constants in the
general solution of a differential equation is called a particular solution of the
differential equation, under consideration.
Illustration y = 7x* is a particular solution of the differential equation

d . . . .. .
X % — 4y = 0, because this solution has been obtained by giving a particular value ‘7

to the arbitrary constant ‘C’ in the general solution.

SOLVED EXAMPLES

Example 9. Show that y = be* + ce® is a solution of y, — 3y, + 2y = 0.
Solution. We have y = be*+ ce?~.
y, = be* +2ce* and y, = be* + 4ce®™
¥y — 3y, + 2y = (be* + 4ce?) — 3(be* + 2ce™) + 2(be* + ce?™)
=be*(1 — 3 + 2) + ce?(4 — 6 + 2) = be*(0) + ce**(0) = 0.
y = be* + ce?* is a solution of y, — 3y, + 2y = 0.

Self-Instructional Material
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Ordinary Differential B d? y dy
Equations Example 10. Show thaty = Ax + - s a solution of x° gy +x Pl 0.
X
. B
Solution. We have y=Ax+ p
NOTES d_y—A+B( beioa B
dx YT EAT e
2_'y » 2B
and dx_2 =0+ B-D(2) x> = x_3
2
2 d”y A _y=2a? [g} +x[A—%} —[Ax+2}
dx? dx x x x
2B B B
=— +xA-—-Ax——=0
X X X
B . . d?y dy
= —_— 2 _— - — =
y=Ax+ L sa solution of x o7 +x e Y 0.
Example 11. Show that y = A?—x? x e 4, A) s a solution of
dy
x+y—=0,y#0.
dx
d 1 _
Solution. We have y= A% -x%. . D= (A2 —x?) 12 (2x) = S
dx 2 AZ _ 52
x+yﬂ=x+( A? —x%) X =x+ (=) =0.
dx

1/A2 - x?
y =+/A% —x? is a solution of x + y% =0.
x

EXERCISE C
2
1. Show that x2 + 4y = 0 is a solution of (ﬂ) +x Q -y=0.
X dx
. . xy
2. Show that y = ,/1 2 is a solution of y’ = .
Y T Y 1+ x2
2
3. Show that y = 1 + Ax + Bis a solution of x° d_.;/ =1.
2x dx
4. Show that y =a cos x+ b sin x is a solution of y” +y = 0.
. . . ,d%y | dy
5. Show that y = 3 cos(log x) + 4 sin(log x) is a solution of x w + xd— +y=0.
x

6. Show that y = ae* + be™is a solution of y, —y, — 2y = 0.

7. Show that y = ¢ (A + By) is a solution of y, — 6y, + 9y = 0.

8. Show that y = c¢,e® cos bx + ¢,e® sin bx is a solution of y, — 2ay, + (a* + b%)y = 0.
dzy

9. Show that y = cos (cos x) is a solution of 5 —cotx ﬁ +y sinZx = 0.

dx
10. Show that x+ y =tan~!y is a solution of y*y' + y2+ 1 = 0.

11. Show that y = x sin xis a solution of xy’ =y + x,/32 — y2 (x# 0 and x>y or x < —y).
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12.

13.

14.

15.
16.
17.
18.

19.

20.

21.

22.

22.

10.

11.

12.

13.

Show that y — cos y = xis a solution of (y sin y + cos y + x)y’ = y.

Show that x2 = 2y2 log y is a solution of (x? + y2) % —xy=0.
X

. . d
Show that y = ¢ e* + c,e™ is the general solution of 202 -y =0.
x

Show that y =e* + 1 is a solution of y” —3y" = 0.
Show that y = x%2 + 2x + Cis a solution of ¥ — 2x -2 =0.
Show that y = cos x + C is a solution of y" + sin x = 0.

Show that y = Axis a solution of xy’ =y, x # 0.
2

. . d
Show that y = ae® + be™ + x? is a solution of d—‘g -y + x2-2=0.
x
— o o : d%  dy _
Show that y = e* (a cos x + b sin x) is solution of —5 - Zd— +2y=0
dx X

Show that x% — y2 = c(x2 + y?)? is a solution of (x* — 3xy?)dx = (y> — 3x2y)dy.

b
Can y = ax + — be a solution of the following differential equation

a
de dy
dx
If no, find the solution of the given differential equation. (CBSE 2018 SP)
Answer
Yes.
Hints
y:i+Ax+B = ¥ -__1 +A = y z—l(—2)x*3 = 2y, =1
2x 1 9x2 2 9 2
y =3 cos (log x) + 4 sin (log x) = y,= —3sin (log x) + 4 cos (log x)

x x
= «xy, =-3 sin (log x) + 4 cos (log x)

= a1y, = —3cos(logx)_4sin(logx):_z.

x x x
y=cos (cos x) = y;=-—sin (cos x) - — sin X = sin x-sin (cos x)
= Y, =cos x - sin (cos x) + sin x - cos (cos x)- — sin x

= y2:(c0sx)[ 'yl ]—(sinzx)y,
sin x

xty=tanly = 1+y= Y= A+yHA )=y

1+y2
= 1+y2+y%y/=0.

y=xsinx = y =sinx+xcosx

’ 2
= xy=xsinx+aicosx=y+2a2 1-sin®x =y +a2 1—y—2 =y+ayx - 5%,
x

y—cosy=x = Yy +(siny)y =1 L)
Also, (ysiny+cosy+x)y =(ysiny+y—x+x)y
=(siny+y)y =yiny+ 1)y =y(1) =y.(By using (1))
9 2
2=2%logy = =4y logy+ 2y = x=Q2ylogy+y)y
y

= xy=@?logy+yHy = wy=2+yHy.

Differential Equations

NOTES
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Ordinary Differential

Equations INITIAL VALUE PROBLEM

A differential equation with given initial conditions is called an initial value
NOTES problem.

dy _

Te ysec x, y(0) = 1 is an initial value problem, because the solution of the
x

differential equation Zy = ysec x is also to satisfy the initial condition y(0) = 1.
x

SOLVED EXAMPLES

3x
Example 12. Show thaty=2- o s a solution of the initial value problem:

+1

e o
—x—= =21+
y xdx x?

Solution. We have y=2— NE))
2x+1
3(1)
r=1 = =2- =2-1=1 =~ y=1
y 2+ 1 y(1)
_ 3
O - dy _y_ @x+13 E;x(Z):_ i
dx Q2x+1) 2x+1)
y—xQZZ— 3x .- 3 l=2- 3x N 3x ,
dx 2¢+ 1 Qx+1 2¢+1 (2x+1D
C22x+ D - 3x(2x+ D+ 3x 2% +8x+2
2x + 1)? (2x + 1*

and 2(1+x2ﬂJ=2(1+x2(—%n
dx 2x+ 1)

0 (2x+1)% -3x% ) 2x°+8x+2
2x + 12 (2x + 12
dy zdy)

=2 =9]|1 =

y xd (+x d

X X

3x

2x+1
is a solution of the given initial value problem.

y:2_

Example 13. Show that y = x sin 3x ts a solution of the initial value problem:

d2
—= + 9y —6cos 3x= 0, y(0) =
dx?
Solution. We have y = x sin 3x. NE))
x=0 = y=0-sm 30)=0 ~ooy(0) =
(1) = %Zx-30083x+1-sin3x=3xcos‘3x+sin3x
x
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2
N ‘;g:(&c (=3 sin 3x) + 3.1. cos 3x) + 3 cos 3x
X
= —9x sin 3x + 6 cos 3x
2
. Z;’ + 9y — 6 cos 3x =-9x sin 3x + 6 cos 3x + 9(x sin 3x) — 6 cos 3x =0
X

y =x sin 3x is a solution of the given initial value problem.

EXERCISE D

1. Show that y = e* is a solution of the initial value problem:

dy
2 YO =1
2. Show that y = sin x + cos x is a solution of the initial value problem:
Py, _ —1 0 =
WJF}’—O,}’(O)—L}’(O)—L
3. Show that y = xe* + ¢* is a solution of the initial value problem:
d*  dy
—5 —2—+y=0,y0) =1, y(0) =2.
2 e Y ¥(0) ¥'(0)
4. Show that 3x*y = 2x + y is a solution of the initial value problem:
x?dy + (xy +yHdx=0, y(1) = 1.
5. Show that 2y = x(x + ) is a solution of the initial value problem:

. TR

Differential Equations

NOTES

SOLUTION OF A DIFFERENTIAL EQUATION BY THE
METHOD OF SEPARATION OF VARIABLES

Let us consider the differential equation % =f(x) gly),
X

where f(x) and g(y) are some functions of x and y respectively.
We know that

_ (9
dy = (de dx,

where dx and dy are respectively the differentials of the variables x and y.

1 = dy = f(x) 8(y) dx
Ay f(x) dx, provided g(y) #0
gw)

involving x are on the other side.
Such a differential equation is said to be with variables separable.
Integrating equation (3), we get
dy
&)
This represents the general solution of the differential equation (1).

= J f(x) dx + C, where C is an arbitrary constant.

(D)

(2

In equation (2), the expressions involving y are on one side and the expressions

Self-Instructional Material
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Ordinary Differential
Equations

NOTES

d
Working Steps for Solving % = f{x) g(y)

Step I.  Identify the functions f(x) and g(y).

Step II. Bring expressions involving x on one side and expressions involving y
on the other side. Always keep dx and dy in the numerators.

Step III. Integrate both sides and add arbitrary constant ‘C’ only on one side.
This gives the required general solution.

Step IV. If some initial condition is given, then find the value of the arbitrary
constant ‘C’, so that the initial condition is satisfied. Put the value of
‘C’ in the general solution to get the required particular solution.

18  Self-Instructional Material

Tpye I. Solution of % = fix)

If g(y) = 1, then ﬂ = f(x) g(y) reduces to ﬂ = f(x).
dx dx

SOLVED EXAMPLES

Example 14. Solve the differential equations:

@) (e +ed)dy — (" —e¥)dx =0 (i) dy _I-cosx
dx 1+cosx

Solution. (1) We have (¢ +e™) dy = (¢ — e™) dx.

x _ _-x
= dy = % dx (Variables are separate)
e* +e

et —e*
Integrating, we get jl-dy = j ——— —dx+C.
e +e*

= y=logle*+e™| +C ( ffEx; dx =log| f(x) |J
= y=log (e*+e*) + C.
dy 1l-cosx . 1-cosx :
(11) We have —— je,dy="—"—"""(x (Variables are separate)
dx 1+cosx 1+ cos x

) —cosx
Integrating, we get j l-dy = j 1 dx + C.

+cosx
2sin? =
- y= j—dx+c
2cos? =
2% x
= yZI (sec E_lJ dx+C =>y=2tan5—x+C‘



Example 15. Solve the differential equations:

@ U+ x%ﬂ —x=2tan ' «x (1) cos x dy cos 2x = cos 3x.
dx dx

Solution. (i) We have (1 + x?) % —x=2tan! x.
X

dy x+2tan"'x
— P

dx 1+ x2
-1
= dy= d 5 +2 tan Zx dx (Variables are separate)
1+x 1+x
1 2x _1 1
= dy=|=- +2-tan” " x- dx
Y (2 1+ 22 1+ sz

Integrating, we get

de=§1j 2x dx+zjtan-1x. LI

2

1+ x2 1+x
-1 .32
= y:%log|1+x2|+2M+C
= y= % log (1 +x2) + (tan! x)2 + C.
. dy _
(1) We have cos x == — cos 2x = cos 3X.
dx
dy cos2x+ cos3x
= - =
dx COS x
2 3
= dy = 2cos”x—1+4cos x—3cosx dx (Variables are separate)
cos x
9 1
= dy=|2cosx+4cos” x—3— dx.
cos x
= dy=(2005x+4(#)—3—secx}dx
= dy=2cosx+ 2+ 2cos 2x—3—sec x)dx
= dy = (2 cos x + 2 cos 2x — 1 —sec x)dx
Integrating, we get
sin 2x

y=2sinx+ 2. —x—log |sec x + tan x| + C.

= y=2sin x + sin 2x - x — log |[sec x + tan x| + C.

Example 16. Solve the differential equation:

(x3+x2+x+1)g—y =2¢%+x, y=1when x=0.
x

d
Solution. We have (x*+x2+x+ 1) d_y =2x% + x.
X

2x2 + .
= dy = sz—x dx (Variables are separate)
x“+x”+x+1

Self-Instructional Material
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Ordinary Differential Integrating, we get

Equations 9 9,2
J‘dy J‘ x+x de + C :y:jx—-{_zxdx—i-c
2 +x?+x+1 (x+Dx“+1
NOTES 1 3 1
— y:J' 2 +2 2| de+C
x+1  x%+1

(By resolving into partial fractions)
= 210g|0c+1|+—10g(1c2+1) 2t:am*loc+C
Also,y=1 whenx=0 .2
_1 3 1 _
1n = I==log 1l +Zlog(H)-=(O)+C = C=1
2 4 2
The required solution is

1 3 1
== +1| +— 2+1)- - Tx+
y=5 log |x+1] 1 log (x*+1) 2 tan! x + 1.

EXERCISE E

Find the general solution of the following differential equations (@. No. 1-3):

) dy x
1. 2 —===2 = =
@ dr (ll) dx 21
) gy _ x2 + sin 3x (v) =~ dy l—c—os4x
dx dx 1+cos4x
d
2. () (x+2)d—i=x2+4x—9 (i) y1-x8 dy =22 dx
dy .. ady 1
—_— 2 + _—=—
(m) log (x+ 1) () 2 sintx 1 costx
3. (1) = dy =5 tan~1 & ) % =sin®x cosZx + x e*
x
) ody
(m) —— =tanlx @Iv) = =sin lx
x dx dx
4. Solve the following initial value problems:
(i) x % +1=0,y1)=0 (i) eDdx = x + 1, y(0) =5
x
@) x(x%2—1) == dy =1,y@2)=0 (tv) sin (j J =k, y(0)=1.
x
Answers
. 2 . 1
1. (L)y+;=C (u)y=§log(x2+1)+C
3
(iii)y:x?_cos:fx +C (iv)yZ%tan2x—x+C
2

) . 1 .
2. (L)y=%+2x—1810g | x+2 | +C(u)y=§ sin~'x’+ C
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1 _
@) y=(@+1)logx+1)—x+C (iv)yZEtanl[M]+C

=

1
3. O6y=@C+Dtan x> —2>+C (ii)yZé cos5x—§ cos’x+ (x—1) e+ C

1
(i) y = El(x2+ 1) tanflx—§x+ C (@uyy=xsinlx+ 1&1—x2 +C

4. @) y+log x| =0 @@y y=x+1Dlog(x+1)—x+5
2
@) y= 51 log % Gy=xsintk+1.

Differential Equations

NOTES

TYPE II. Solution of % = g(y)

If f(x) =1, then ﬂ = f(x) g(y) reduces to ﬂ =g(y)
dx dx

SOLVED EXAMPLES

Example 17. Solve the differential equations:
2
) .. 1
(l)ﬂ+1+y =0 (u)ﬂz )
dx y dx logy
1+y®
Yy

1 2
. dy __1+y" Y dy=—d

dx y 1+y

Solution. (z) We have % + =0.
X

(Variables are separate)

Integrating, we get j Y 5 dy= —j dx + C.

1+y
1
= EJ. 2y dy=—x+C = —log(1+y»)+x=C.
2J 14,2 2
(11) We have ﬂ: 1 )
dx logy
= log y dy = dx (Variables are separate)
Integrating, we get J log y dyZJ dx + C.
= jlogy-ldy=x+C = (logy)y—J‘ l-ydyzx+C
y
= ylogy—-y=x+C.

Example 18. Solve the differential equations:

. dy . dy I+cosy
—= +cos’y =0 —t+— =0.
© dx %Y @) dx I-cosy
Solution. (i) We have Z—y + cos? y= 0.
X
= Z—y =—cos?y = seclydy=—dx (Variables are separate)
X
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Ordinary Differential Integrating, we get

Equations
J sec2ydy=—_[ dc+C = tany=-x+C.
.. dy 1l+cosy
1) We have 2 +—""2 =0
NOTES ®) dx 1-cosy
- ﬂ:_1+cosy N 1—cosydy:_dx

dx l1-cosy 1+cosy
(Variables are separate)
Integrating, we get

j wdyz—] dx + C.

1+cosy
2sin? 2
= j -2 dy=—x+C = J‘(seczl— deZ—x+C
2005Zz 2
2
= 2tan%—y=—x+c = x—y+2tan%=C‘

EXERCISE F

Find the general solution of the following differential equations (Q. No. 1-3):

L dy ... dy 1
1. )5 - ty=1,y#1 i) 4+ =—uw—
O g Ty=LY ()dx Zrsiny
o dy 1+y2 . dy 2
1) —= ) == =4/4—
i) == (iv) X = 4y
; dx N .
2. (ydy= — (1) (sin y — cos y)dy = (sin y + cos y)dx
tan "y
(@i1) (y? tan— ! y3)dy = dx (v) ylogy dy = dx
3. (i)%Zsecy (ii)%ZSin2y
... dy _ 1-cos2y . dy
) = = ——— 2 ) QY2+ y) == =y3+y2+y+1
( )dx 1+ cos 2y @) @y y)dx y ryity
4. Solve the following initial value problems:
m
@ L 2y*=0,y(1)=1 @) L cosy =0, y(0) =~
dx dx 4
Answers
y3
1. @log|l-y|+x+C=0 (ii)xz?—cosy+C
¥ 1
(iii)x=7—§log(y2+1)+0 @) y =2 sin (x + C)
. 1 _ y .. .
2. (L)xZE(y2+1)tan 1y—§+C @) x+log |siny+cosy|=C

@) 6x=(5+ 1) tan 1y3 —y> + C (v) 4x=2y%logy —y?+ C
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3. () x=siny+C @) x+coty=C
@) x+cot y+y=0C

(iv)x=§110g|y+1|+%10g(y2+1)—§1tan*1y+C

4. O y= @) x+tany=1.

2x -1

Differential Equations

NOTES

TYPE Ill. Solution of % = f(x) g(y)

SOLVED EXAMPLES

Example 19. Solve the differential equations:
@) (v +xy)dx + (v — xy*)dy =0
@) (y2 + I)(e* + xe¥) dx — xe*y? dy = 0.
Solution. (I) We have (y + xy)dx + (x — xy?)dy = 0.

= yA+xde+x(1-yHdy=0 =  y(1+x)dx=—x(1-y9)dy
1 Z_1
= ;x dy=2 5 dy (Variables are separate)
2
-1
Integrating, we get j 1+x deJ Y dy + C.
x Y
1 1
—+1 = -—
= j(x )dx j(y yjdy+C
y?
= 10g|x|+x=?—10g|y|+C
2
= loglxy|+x=y?+C‘

@1) We have (y® + 1)(e* + xe¥)dx — xe“y? dy = 0.
= (3 + De* (1 + x)dx = xe*y? dy

1+x yz

x ’x:y3+1

=

I i (l+1Jd—1 3de +C
ntegrating, we get j x =3 _[ y3 41 y .

1
= log|x|+x=§log [y +1] +C.

Example 20. Solve the differential equations:

@) sec® x tan y dx +sec® y tan x dy =0

@) e tan y dx + (1 —e*) sec®y dy = 0.

Solution. (i) We have sec?xtany dx+ sec?y tan x dy =0.
= sec? x tan y dx = —sec? y tan x dy

dy (Variables are separate)
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Ordinary Differential
Equations

NOTES
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2 2
sec X sec
et —_— dx = — y

dy (Variables are separate)
tanx tany

2 2
Integrating, we get j %€ X gy =— j S€C Y gy + C.
tan x

tan y

= log|tan x| =—-log [tan y| + C = log |[tan x tan y| = C
= |tan x tan y| = e© = tan x tan y = % eC
= tan x tan y=C,. (Taking C, =+ ¢°)
(1) We have e*tany dx+ (1 —e*) sec?2y dy = 0.
= e“tany dx = (e — 1) sec? y dy

e” sec? y )
= o1 dx = tan y dy (Variables are separate)

ex 2
Integrating, we get j dx = j sec ¥ dy + C.

e* -1 tan y
= log lex— 1| =log [tan y| + C
x_l x_l x _
e loguzc e — C N e 1:iec
|tan y | tan y tan y
= es-1=C, tany. (Taking C, =+ ¢°)

Example 21. Solve:

) dy . d
O 1427 37 4222ty - =0 () log (%) = 3+ 4y.

. d
Solution. (i) We have \/1*' x2+y2 +x2y? tay % =0.

d
= Ja+xH1 +y?) +xy£=0
1[1+x2
=

X

dx + Y dy=0
\/1+y2

(Variables are separate)

[ 2
Integrating, we get 1+x dx + Y dy = C. (D)
X 1+y2

J+4x2 =2 = 1+x2=22 = 2xdx=2zdz

J‘—VlzxzdeJ‘ “1+2x2 xdeJ 2 zdz

x 2-1

2

3 z [ E2-D+1
_J e dz—J‘ ﬁdz

1 1 1
= 1+—F—— =
J[ (z—l)(z+1)] dz=z+ [<2_1><2>+<—2><z+1>} a2

z-1
z+1

1 1
=2+E(log lz—1| —log |z + 1|)=2+Elog



2
~ 7.1 yi+a2” -1 7.1
=\1+x 9 0g 1422 +1 T l+x 9 0g

Also, Jl+y2 =2z = 1+y?=22 = 2ydy=2zdz

jﬁdyzj 2—ij ldzzzzw

1 J1+x2 -1
1) = J1+x2 +§10g—
J1+x2 +1

. dy
(1) We have log ) = 3x + 4y.

+,1+y% =C.

dy
dx
e® dy =e%dx

Integrating, we get J e dy = J e dx + C.

= — 63x+4y

dy

2 — p3x pdy
= e e
dx

=

3x
e =% +c

-4 3
Example 22. Show that the general solution of the differential equation

_4y
=

2
ﬂ+y +y+1

dx  x? +x+1

_dy
y2+y+1

dx

2

+y+1
dy vy ty+1l_ i
x“+x+1

Solution We have 5 i.e., +
X x“+x+1

(Variables are separate)

dx

Jl+a2 -1
1/1+x2 +1

(Variables are separate)

=0isgivenby (x +y+1)=Ad - x -y — 2xy), where A is a parameler.

Differential Equations

NOTES

0.

(D)

Integrating, we get + =C.
. . . -[ y2+y+1 -[ x?+x+1
N J‘ dy i +J‘ dx ! —C
2 2
(y+1) 3 (1) NEE]
2 2 2 2
y+1 x+1
= 1 ant|” 2|+ = tant 2| =C
J3/2 J8r2 3/2 V372
2 a(2y+1 1 2x+1
= — | tan + tan =C
= tan! 2x+1 +anl (20 +1 :ﬁ C=C,, say
7 B ) 2
2x+1+2y+1
L ot | B J3 _¢, V8 (Qu+1+2y+1) anC,
1_2x+1.2y+1 3-QC2x+D2y+1
5B
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Ordinary Differential
Equations

NOTES
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2V3 (x+y+1) V3 x+y+1 — tan C
T o 1

= =tan C, =
2—4xy —2x -2y 1-x—y—-2xy
= x+y+1=tancl (1—x—y—2xy)
V3
= x+y+1=A1-x-y-2xy),

where A = tan C,

NE]

Example 23. Solve the following differential equations:

is a parameter.

d 2x(l +1

@ ye™» dx = (xe*™ +y*)dy, y # 0 iy L - Zlogxt D)
dx siny+ycosy

i ] x/ _ o/ 9 . W dx X »
Solution. (i) Wehave ye™” dx= (xe*”+y%)dy i.e., e yd_ =Xty 1)
y Y
Put z=2 x=zy and @:2+yﬁ
Y dy dy

dz dz dz
1) = ¢eflzty—|=2*+ty = €€y—=y = &—=1
1) ( ydyJ y ydy y dy

= edz=dy (Variables are separate)

Integrating, we get J e’ dz = J dy +C.

= e=y+C = e?=y+C.
d 2x(1 +1
(11) We have & M
dx siny+ycosy
= (sin y +y cos y) dy = 2x (log x + 1) dx
= .[(siny+ycos ydy = .[2x log x dx + _[2x dx+C
= .[sinydy+.|.y.cosydy:2J.10gx.xdx+x2+C
11 I 1

2 2
= —cosy+ [ysiny—_[l.sinydy] 22[(10gx)%—.|.1.%dx} +2+C
X

2
= —cosy+ysiny+cosy=x2logx—%+x2+C
2
ysinyzleogx+? +C.

Example 24. Solve the following initial value problems:
@)y =y tan 2x, y(0) =2 @) 2xy’ = 3y, y(1) = 4.
Solution. (1) We have y’ =y tan 2x.

d
_y:ytanzx = d—y:taandx
dx y

dy 1 ,
Jo=lanzmdc 5 10g|yl=w+c‘
1 0
Now, y(0) = 2 implies log|2|:%+c
. log 1
r.e., logZZ%_;’_C or C:log2



Dj tial Equati
The required particular solution is log |y | = M + log 2. Uferential Equations
= log | v | =log | sec 2x |2+ log 2
2 .
= log |y | =log — Assuming sec 2x > 0)
Bl : 4/cos 2x ( 8 NOTES
= y= L (Assuming y > 0)
Jcos 2x
.. . dy dy 3 dx
/= 2 _3 @ _ o ax
(11) We have 2xy’ =3y 1l.e, 2x d Yy or Y 2 %
dy 3 J‘dx 3
—_— = — — 4+ = — +
= jy 5 )= C = log|y] 2loglxl C.

Now, y(1) = 4 implies logl4|=%log|1|+C or C=log4

3
log|y|=§loglxl+10g4=log4|x|3’2

= y = 4x%2, (Assuming x> 0, y > 0)

This is the required particular solution.
Example 25. Solve the following initial value problems:
(@) cosy dy +cosxsinydx =0, y(m/2) =7/2
o d
@) A e cos x, y(0) = 0.
dx
Solution. (1) We have cosy dy + cos x sin y dx = 0.
cosydy

= —— +cosxdx=0 = cotydy+cosxdx =0
sin y

jcotydy+jcosxdx=0 = log |siny| +sinx=C

.M
sin —
2

T
Now, y(EJ = g implies log + sin g =Cile,0+1=CorC=1

The required particular solution is log |sin y| + sin x = 1.

.. dy
— = 7
(11) We have e ¢ cosx
d cos x
= LA = e dy=cosxdx
dx e
= JeydyZJcosxdx+C = e¥=gin x + C.

Now y(0) = 0 implies e°=sin0+C or 1=0+CorC=1
The required particular solution is e’ = sin x + 1.

Example 26. Solve the following initial value problems:
@) % =1 +x% +y2 +x%y? given that y = 1 when x = 0.

x
@) (x —y)(dx + dy) = dx — dy given that y =1 when x = 0.

Solution. (i) We have % =1+ 22+ y2 + x%y2.

X
= Do ra1+y) = dy2=(1+x2)dx
dx y
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Ordinary Differential Integrating, we get

Equations 3
tan*1y=x+%+0 (D
NOTES Also,y=1when x=0
1) = tan'1(1)=0+0+C - C=m/4
3
1 = tan‘1y=x+%+%‘
(1) We have  (x —y)(dx +dy) = dx — dy.
_ d(x—y)
= dx+dy=dx dy = d(x+y)=—y
x—y x=y
Integrating, we get
jd(x+y) jd(x e = xty=loglx—yl +C (1)
Also, y=—1whenx=0
1 = 0-1=log [0-(-1)]| +C = —-1=0+C = C=-1
1 = x+y=log |x-y| -1
EXERCISE G

Find the general solution of the following differential equations (Q. No. 1-2):

4y . dy 1- y2
1. — = - 4 =0
@ ) dx x(y —2) @) dx 1-x2
Ay N DY _ 32
1) —=— =" +1 ) =L = y
(1) I ( )y () kil
. 5 Q — 5 ay _ x+1
2 )=y i 2 - 2
2
(111) ﬂ=1+—y2 @v) ylogy dx—xdy=0.
dx 1+x
Find the general solution of the following differential equations (Q. No. 3-8):
d
3. () —x%%:x(l +y?) (i) (1 + 2y dx+ (1 — y)x dy =0
d
i) y—a % =ay’+x % (iv) cosec x log ¥y d—z + x2y2 =0.

4. O Q+2090+y)dx+ 1 +y)A+xD)dy=0
(i) (% —yx?) dy + (y* + x%yHdx =0

@) y— x%—a(y2+ZyJ (V) x1-y2 dx+y,/1—x2 dy=0
5. (i)%=x+y+xy+l @) (1 —e*) sec2y dy —2e*tan y dx =0
X
@) 1+ y»HA +log x)dx+xdy=0 (tv) cos x cos y % +sinxsiny=0
X
6. () +1Dydy=(@+1e dx (1) tan y dx + sec? ytan x dy =0

(1) 1+ %2 dy+ 1+y2 dx=0 (v) sin3x=siny%

X
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Differential Equations

i) D mgrry gty (i) (y° + 20)dx + (x2y + 2y)dy = 0

7.
(i) gy _ (cos? x — sin? x)cos2y @iv) xy dy _ 1+x+y+axy
dx dx
8. ()ydl+eddy=(@y+1e‘dx 2)) % =y% tan 2x
X

@v) (1 +e2)dy + (1 + yHe¥dx=0

(iti) e*\[1- 32 dx+ 2 dy=0
X

Solve the following initial value problems (. No. 9-12):
(i) y' = —4xy? y(0) = 1

9. (1) y =2e%3 y(0)=1/2

@) xyy' =y +2,y2)=0 @Iv) ¥ =y cot 2x, y(m/4) =2
@) x(1 + y)dx —y(1 + x2)dy =0, y(0) =1
@) L +yHA +log x)dx+xdy=0,y1) =1

@) 1 —y»H(A +log x)dx + 2xy dy =0, y(1) =0
() sec?y (1 + xd)dy + 2x tan y dx =0, y(1) = n/4

(i) (c+ 1) W gy 1, y(0) = 0.
dx

10.

2 + si d
1 02D 0o
Gi) 1+ e)dy+ (1 +y)etdx=0,y0)=1 (@v) x&>-1 % =1,y2)=0
x
. (dy)
(i) log| ——|=3x+4y,y(0)=0
dx

12. @) % =ytan x, y(0) =1
X
(V) (% —yxAdy + (y* + x%y?) dx =0, y(1) = 1

(i) 1y 2 = e+ Dy + 2, 1) = 1
dx

Answers
1. () y=log (x*y? +C @) sin!x+sin"ly=0C
@) log |yl =e*+x+C @(v) 2e¥ =x*+ C
2. ()xt+y?t=C @) x*+y2+2x—4y+C=0
@) tanty=tanlx+ C (v) y = et
3. () A-xHA+y3)=0C @) log |xy| +x—y=0C
1+1lo
@v) — SroeY, (2—-x% cosx+ 2xsin x=C

@it) (@ +x)(1 —ay) = Cy
4 (@) tan'x+tanly+ % log 1+ +y*)=C

.. 1 1
(u)x—loglyl—(;+;]=c (1) (x+ a)(1 —ay) = Cy

Gv) J1-x2 + 1-y2 =C
@) tan y = C(1 —e%) 2

. 1
@ log |y + 11 =3 2+ x+ C

5.
o1 S
) E(l +1log )2 +tanly=C (tv) sin y = C cos x
6. @My-logly+1|=log*+1)+C @11) sin xtan y=C
. 1
@) (x+ J1+x2)(y+ 1+92)=C (iv) cosy+§cos'3x—cosx=C
7. (Dev*—ev¥=e+C @) 2+ 2)(y2+2)=C
@Gvyy=x+log [x(1+y)| +C

1 .
@I11) tan y = 2 sin 2x + C

NOTES

(ii)—EZ%log | sec 2x| + C

8 ()y—-log I1+y|l=log CI+ e
@) (x—1)e*— J1-y2 =C @) y + e* = C( — ye¥)
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Ordinary Differential

Equations 9.
NOTES 10.
11.

(i) y*8 —4e) =1

@iy y=2log |y + 2| +log%

@) y*—2x2=1
i) 1+logx)2=21log |1 —9y2] +1
() @+sinx)(1+y)=4

@11) tan~' y + tan ! e* = /2

Wy=g2i1

(V) y* = 4 sin 2x
(i) 21 +logx)2+4tanly=2+m

@) 1 +x%)tany=2
() x+ D@ —e) =1

‘ 1, 4]x?-1
(v) y = ElogM

3x2

12. () y=secx (@) 43+ 3e v =7

@) y—x+2=2log | x(y +2) | vyx=x'+yl+log|y|-1.

Solution of % = flax + by + c) by the Method of Separation of Variables

. . . . d
Consider the differential equation é =f(ax + by + ¢), NE))
where f(ax + by + ¢) is some function of ‘ax + by + ¢'.
dz
_ .odz dy dy _ dx
Let z=ax + by +c. S —a+bdx or - b
&,
M = L —fr) = E-be+a
X
dz
< =d .2
- bz ta @

In the differential equation (2), the variables x and z are separated.
Integrating (2), we get

j —bf(jfm =j1.dx+ C.

J‘ dz

= =
bf(z)+a
This represents the general solution of the differential equation (1).

=x+C, where z=ax+by+c.

Working Steps for Solving Z‘y = flax + by + ¢)

X

Step I.  Identify the function f(ax + by +c).
Step II. Put z = ax + by + ¢ and differentiate it w.r.t. x. Solve this to find the
dy
value of I

dy
dx
Separate the variables z and x and integrate both sides.

Step III. Put the values of and ax + by + ¢ in the given differential equation.

Step IV. Replace the value of z. This gives the general solution of the given

differential equation.
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SOLVED EXAMPLES
Example 27. Solve the differential equations:
@) dy cos (x+y)=1 @1) cos® (x — 2y) =1 — 2ﬂ‘
dx dx

Solution. (1) We have ﬂ -cos(x+y)=1 or ﬂ =sec (x +y).
dx dx

RHS of (1) is a function of x +y.

dz dy dy _ dz
z=x+ = —=1+= = = =—-
Y dx dx dx dx
1 = ﬁ—lzsecz = £=1+secz
dx dx
= _dz =dx (Variables are separate)
l+secz
= _S92 gy =dx = 1——1 dz = dx
l+cosz l+cosz
Integrating, we get
j -1 dz:j1-dx+c.
l+cosz
= z— ;Zdzzx+(]
2 cos? =
cos” o
1 2
= Z_EJSGC Zdz=x+C
1tan§ x+
= - = =x+C = x+y-—tan Y —x+C
2 1/2
x+y
= y=tan + C.
2
. 9 _ dy
(1) We have cos? (x —2y) =1-2—.
dx

dy _ 1-cos® (x-2y) _ sin® (x—2y)

dx 2 2

1(1-cos(2x—4y) 1
= — :—1— 2;_4
2( 5 j4( cos (2x — 4y))
dy _ 1
2 -—a- 2x — 4
T 4( cos (2x — 4y))

RHS of (1) is a function of 2x — 4y.

d
pmop-dy = g 4B W

dx dx dx
1 dz
1 —l{2-—|=
(H = 4( J

1(2 _
4

&)
dx

Differential Equations

NOTES

(D)

(D)
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Ordinary Differential
Equations

NOTES
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= 2—2—1—%%2 = %ZlJrcosz

dx x

1+cosz

Integrating, we get

J‘%:J‘l-dx+0

1
N dz =x+C = —jsec23d2=x+
2 Z 2 2
2 cos” =
2
z
tan —
= —1 =x+C = tan —4y _ +C
2 1/2
= tan (x-2y)=x+C.
Example 28. Solve the differential equation/s:
()__x+2y—1 (11) 2x-y+2
dx x+2y+1 dx T oy —dx+1
Solution. () We have ﬂ = w
de (x+2y)+1
RHS of (1) is a function of x + 2y.
dz dy dy 1 (dz
Let z =x+ 2y. =1+2 — - ==
chemrm ey dx " dx 2 (dx
14z o z-1 dz 2z-2
1= 2(5_1)_2+1 de = z+1
dz _2z-2 dz _32-1
- dx z+1 = dx z+1
z+1
= 3 1 dz = dx

+1
Integrating, we get f322 1 dz = Il.dx +C

3z-1+4
= —f 51 dz=x+C = —J.( 5,1
= %(2+§log|32—1|):x+c =
= 3(x+2y)+4log|3(x+2y)—-1|=9x+ C;, whereC, =9C
= 6(y—x) +4log|3x+6y—-1/=C

2x — 2 _
(11) We have ﬂz&ie,ﬂzw‘

de 2y-4x+1 dx -2Q2x-y+1

RHS of (1) is a function of 2x —y.

(Variables are separate)

C

(D)

)

(Variables are separate)

J dz=x+C

3z+4log|3z—1|=9x+9C

(D)



dz dy dy dz Differential Equations

Let z=2x—-y. . %:Z_dx or deZ—dx
dz z+2 dz z+2 -5z
(1) = 2— — = = — =2- =
dx 2z+1 dx 2z+1 -2z+1 NOTES
5 _
= % =5, i 1 = 2252 1 dz =dx (Variables are separate)
. 2z-1
Integrating, we get .[ 5, dz= .[ dx + C.

[[2-%]de=x+c 2 - Iloglzl=x+0
5 5, lz=«x = 52—5 oglz|=x

2z—log|z|=5x+5C
2(2x—y) —log | 2x —y|=bx + C;, where C, =5C
x+2y+log|2x—-y|+C,=0.

Lol l

EXERCISE H

Find the general solution of the following differentiql equations (®. No. 1-4):

. dy 2 . dy
1. T S x+ty+1)—==1
© dx x+2y-3 @) @+y >dx
2. (i)ﬂ=(3x+ 2y + 1)? @) (x+ y)2ﬂ=k2
dx dx
ndy _xty+l dy x-2y+3
3 0 dx x+y (@) dx 2x-4y+5
4 Y- mryrl iy B ox+2y+l
dx 2x+2y+3 dx 2x+4y+3

5. Solve the following initial value problems:
@) c+y+1)*dy=dx, y-1)=0 (@) cos (x +y)dy = dx, y(0) = 0.

Answers
1. @) 2y=4log|lx+2y+1|+C @) y=log|lx+y+2|+C
2. (@) \/5(3x+2y+ 1)2\/5 tan [Jg(x+ O]

+C

(i) y = k tan™! x;y
3. ()2y—x)=log|2x+2y+1|+C @) x2—4xy + 4y +6x—-10y=C
@) 3Q2y—x) +log|3x+3y+4|=C (@) 4@2y—x) +log|4x+8y+5|=C

5. ()tany=x+y+1 (ii)yztanx;y‘

HOMOGENEOUS DIFFERENTIAL EQUATIONS AND
THEIR SOLUTION

Homogeneous Function

A function f(x, y) of x and y is called a homogeneous function if
f(x, Ay) = A" f(x, ¥). The number n is called the degree of the homogeneous function
flx, ).
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Ordinary Differential
Equations

NOTES

Illustration. Let f(x, y) = x° + 2xy% — 3y°.
f 0w, Ay) = ()®+ 200 (Ay)? — 3(hy)? = A3[x? + 2xy? — By = A% f (v, y)
x3 + 2xy% — 3y®is a homogeneous function of degree 3.
If f (x, ¥) is a homogeneous function of degree n, then f(x, y) can be expressed as

x" ¢(2J, where q{lj is some function of <.
x x x

Ilustration f(x, y) = x>+ Txy — 3y?is a homogeneous function of degree 2 and

2
we have f(x,y):x2+7xy—3y2=x2[1+7(lJ—3(lJ ]

X X

2
and 1+ 7 (l) - 3(2) is a function of 2.

X X X

Homogeneous Differential Equation

If f(x, y) and g(x, y) are homogeneous functions of same degree then the differential
equation
dy _fx,y)
dx  glx,y)
is called a homogeneous differential equation.
Let f(x, y) and g(x, y) be homogeneous functions of degree n each.

s f(x, y) = x"F(y/x) and g(x, y) = x*G(y/x) for some functions F(y/x) and
G(y/x) of y/x.

dy _foy becomes dy _Foln _ Pyl = 0(y/x), say
dx glx,y) dx  x"G(ylx) G(y/x)
A homogeneous differential equation can also be expressed as
dy
= = (y/x).
T O(y/x)
3 3
Ilustration. Let & = xz——2y3 (D
dx  xy“+Ty

(1) is a homogeneous differential equation, because x® — 2y® and xy? + 7y® are
homogeneous functions of degree 3 each.

(1) can also be expressed as
dy _ 1-20y/x)°
dx  (y/0)%+T(ylx)®

Solution of Homogeneous Differential Equation

Let Q = M ..(1)
dx glx,y)
be a homogeneous differential equation.
f(x, y) and g(x, y) are homogeneous functions of same degree, say, n.

Let f(x, y) =x"F(y/x) and g(x, y) = x" G(y/x)

for some functions F(y/x) and G(y/x) of y/x.
flx,y) _x"Fly/x) _ Fly/x)
8x,y) x"Glylx) Gly/x)

= d(y/x), say
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d
1 = =00
dy dv dv
L ! = UX. — = 1 + — =D+ _
ety=rux T = (1) xdx t xdx
2 = v+ x@ = o(v) dv dx (Variables are separate)
dx ¢(U)

Integrating both sides, we get = +C.
grating =t [ s -
dv y

= J‘ =log|x |+ C, wherev = =~
o) -v

x
This equation is solved and v is replaced by y/x.

Differential Equations

(2

NOTES

o)

Working Steps for Solvmg

Step I. Make sure that R.H.S. is either a function of ‘y/x’ or the quotient of two
homogeneous functions of ‘same’ degree.
. . . dy dv
Step II. Put y = vx and differentiate it w.r.t. x to get il +x Ix

d . . . . .
Step III. Put the values of % and y in the given differential equation. Separate

the variables v and x and integrate both sides.

Step IV. Replace the value of v. This gives the general solution of the given
differential equation.

SOLVED EXAMPLES
+
Example 29. Solve: y = £y
d
Solution. We have -~ = rry (D)
dx X
d
This is a homogeneous differential equation. y=vx = Pl +x d—;
(1) = vexB_FUE
dx X
d
= xd—; =1 = dv= dx (Variables are separate)

jl.dpzj ‘i—x+c‘

Integrating, we get

= v=log x| +C = lzlog|x|+C‘
x
o Ay 2 2
Example 30. Solve: «x i +xy +y°
d 2 2
Solution. We have 12 X =42 + xy + y2 D X hxytyn
dx dx x2

dy dv
= = 5 - =vtx

This is a homogeneous differential equation. y T T

(1)
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dv %%+ x(vx) + (vx)?

)+ y— = = + v+ 2
1 = 1 X 2 1+v+1
d d d .
= X L 1?2 = g 5 = el (Variables are separate)
dx 1+v x
. dv dx
Integrating, we get j 7= —+C
1+v x
= tantv=1log x| +C = tan‘ll=log|x|+C‘
x

d
Example 31. Solve: 2xy D=y +y2
X

d
d 2, .2
Solution. We have A NE))
dx 2xy
. . ) . _ dy dv
This is a homogeneous differential equation. y=vx = — =v+x —
dx dx
2 2 2
(1) = l!+x@:x +@wx)” _ 1+v
dx 2x(vx) 2v
dv_1+v2 \_1—02
- v dx  2v U= 2v
2 .
= v 5 dv= % (Variables are separate)
1-v X
2v dx
dv+ — =0
= v -1 ‘ x
= log [v? — 1| +log | x| =1log C
= log | x@? — 1) | =1log C
52
= x?-1)=xC = x[—2— J = (', where C’' ==£C
x
= y2 —x2=C'x.
Example 32. Solve: x dy —y dx = \x? + y? dx.
2
. dy dy _y y
Solution. We have «x I VT xZ+y2. T x + 1+(;) NE))
.. . ) . dy dv
This is a homogeneous differential equation. y=uvx = 2 U +x Ir
dv dv dx
) — = 2 = —
1 = l+xdx U+ \1+v = m x
(Variables are separate)
dv dx
N j = j — +1log C
1+0? x

= log v+ J1+02 | =log [x] +1log C



2 a2 12
N log l+1/1+y—2 =log (Clx]) = |ZZNETY T-(y
X X X
= |y + x2+y2 | = Ca? =yt x?+y? =087
= y+x®+y? =Cx2 (Putting C, = +C)
e 2
Example 33. Solve: x Ir = 2xy +y-
. dy dy _ 2xy+y”
2 < + 42 . - =~ v
Solution. We have «x dx 2xy +y< dx 2 (D)

.. . . . d
This is a homogeneous differential equation. y=uvx = é =v+tx T

dv  2x(vx) + (vx)?

) + _— = — y + 2
(1) = v+x i 2 20+t
dv dv dx
—_— = ) + 2y _p=r0p =+ 2 = —
= X Qu+vd)—v=v+1v¥ = o1+ 0) .
(Variables are separate)
. dv dx
; = = + )
Integrating, we get j o1+0) " log C
1 1
———— | dv=1I x| +log C
I(U 1+UJ v=1log |x| + log
= log vl —log |1+ v| =log Clx|
v _ yix _
= log 1+ 0 =log Clx]| = | Ty =Clx|
L= Clxl Iyl =Clx@+y)l
= P X = yl =Clx(x+y)
= y==xCx(x +y)
= y=Cyx(x+y), whereC, ==C.
d .
Example 34. Solve: LY nd
dx «x x
d .
Solution. We have - =2 + gin 2. NE))
dx «x x
.. ) . . dy dv
This is a homogeneous differential equation. y=uvx = 2 =V +x Tr
1 ) + d_U =p+ 1 ]
1y = vty o sin t
d ) d .
= X i =sinv = cosecvdv= 7x (Variables are separate)

d
Integrating, we get j cosec v dv = j 7x + log C.

= log

1%
tanE‘ =log |x| +log C

Yy
tan — | =
N log | tan o ‘ log Clx|

Self-Instructional Material
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y
tan—2 ‘ZCIxI = tan - = +Cx
x 2x

= tan 2L =C,x. (Putting C, = +C)

X

. dy _ Y
Example 35. Solve: SR tan o

d
Solution. We have P y —x tan L
dx x
dy _y y
= —— == —tan —
dx x x
. . . . dy dv
This is a homogeneous differential equation. y=uvx = pials +x I
d
(1 = v+x—v=v—tanv
dx
dv dx
= Xx—=—tanv = cotvdv=——
dx x

(1)

(Variables are separate)

. d
Integrating, we get j cot v dv=-— j 7x + C.

= log |[sinv| ==log |x] +log C = loglsinvIZIOgm

. )
= Isin v| =77 = |x||sin=|=C

|| x

= xsinl‘ =C = rsin > =+C

X X
= x sin 2 = C,. (Putting C, =+C)

x

Example 36. Solve: (x° — 3xy?)dx = (y° — 3x%y)dy.

3 g2
Solution. We have (x®—3xy9)dx = (y® —3x%y)dy i.e., by _ % (D
Xy =3x"y
. . . . dy dv
This is a homogeneous differential equation. y=uvx = pials +x Ir
o . dv %3 = 3x(vx)? X3 - 3023 1-3v?
= v X— = = =
dx  (wx)®-3x2(wx) vx®-3ux® ¥ -3v
dv 1-30? 1-3v2 —v* + 3? 1-0*
= X — = _ = —
dx 02 -3v ‘ v3 -3 3_3p
v3 -3 dx .
= 1ot dv = 7 (Variables are separate)

. - 3v dx
Integrating, we get j 1ot dv = j - + log C.

1)3 v
= J‘ 1-o% dl’—3J‘ 1-o* dv=1log |x| +log C



1 —-40° 3_[ 20
_— JE— ) — — d =
- 4.[ |t domg ) o Tl Clal
= —llo [1—vt —= =log Clx!|, where t = v?
1 o8 2 gLlxl, NOTES
1 3 1 1+¢
_— g4 — —_— . — —_ | =
= 4logll vt 2 20 lo ‘l—t log Clx|
11 . 3l 1+ 02 -
= -1 ogll—vl—z g 12 =log C| x|
(1+v) 1+vH)* 1
= log|1-vH).—— | =log (Clx)* = =
§ ’ - 8 a 1-v2?  C*?
2\* 22
= Cx*(1+1vH)'=(1-1H? = (! (1+yJ :(1—3’—2}
X X
= Cat _(x2+y2)4 :—(xz_yz)z
x*. = e
= C,(x* + y»)* = (x* - y»)?%, where C, = C*.

Example 37. Solve: y(x cos 2 + y sin ) dx = x(y sin l —x cos —J dy.
X X

Solution. The given equation is —— =

This is a homogeneous differential equation.

dv

1y = v+xa

dv

= ﬂca
N vsinv — cosv

U COS U

Integrating, we get J

-

=
=
1
=
U COSU
= Xy COS Z
Xy x

vsinv — cosv dl'—2j—+logC

cosv—vsinv

+ O S g
v y cos (y/x) v
1 y 1
— = | = =+ —
5 = Xy COS (x) C,, where C, =+ c

Yy

. (D)

y(x cos—+ys1n )
dy x
(ysmy — X cos )
x

dy _ ,dv
dx_l xdx

v(cosv +vsinv)

y=ux =

vx (x cosv +vx sinv)

x (vx sinv —x cosv) vsinv — cosv

v(cosv +vsinv) 2v cos v

— 1 =

USIinv — CosSv vSinv — Cosv

,dx

. (Variables are separate)

U COS U

dv=2log |x| +1log C
v oS U

—log v cos v| =log Cx?

Note. The above question can also be given as follows:

l:

Solve: y(x dy — y dx) sin

x(y dx + x dy) cos

Y

Self-Instructional Material
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Ordinary Differential Example 38. Check whether the following differential equation is homogeneous
Equations

d
or not: x2 d_y —xy=1+cos (%), x# 0?
X

NOTES Find the general solution of the differential equation using substitution y = vx.
Solution. We have

d.
x? d—i —xy =1+ cos (%), x#0.
1+cos|
P ( )
R dy T,
X X
1
= 243 :Z+_2 (1+cos(zj) ..
dx x x x
This is not a homogeneous differential equation, because RHS is not a function
of y/x.
d. d
Let y=Ux d—izv+x£

(1) = v+xd—v=v+i(1+cosv)
dx x2

dv 1l+cosv dv dx
i S
dx x l1+cosv x
(Variables are separate)
Integrating, we get

dv dx
L )
1+cosv
-2
- x
N J-l c;)svdv:_+C
sin” v -2
9 1
= .[(cosec v — cot v cosec v) dl*=——2 +C
2x
1
= —cot v +cosecv=— — + C
2x
1
= cosecl—cot2+—2=C‘
x x 2x

Example 39. Solve: (x sin? (ZJ - yJ dx +x dy =0 given thaty :Z whenx=1.
x

Solution. We have (x sin? (ZJ - yJ dx+xdy=0.

X

-2 (Y
y—xsin (j
dy 7 \x) g, ﬂzl—snﬁ(ZJ ()
X X X X X

40  Self-Instructional Material



This is a homogeneous differential equation. y=uvx = dy _ v+ xﬂ
dx dx
vx . vx
1) = e =P gn? (—J
dx x x
= xﬂ =—sin?v = cosec?vdv=-— dx
dx X

(Variables are separate)

Integrating, we get j cosec® vdv = — j ﬂ +C
x

= —cotv=-log x| +C
= log |x| —cot (y/x) =C (2
Now, y = /4 when x = 1.
2 = log 1] —cot ((n/4)/1)=C = C=0-1=-1
2 = log | x| - cot (y/x) =-1. This is the required solution.
Example 40. Solve: x> dy + (xy +y?)dx = 0, given that y = 1 when x = 1.
d (x +y)
Solution. We have x2dy+y(x+y) dx=0. .. é =— ya;_zy (D)
This is a homogeneous differential equation. y=uvx = d—y =v+: Z—v
X X
1) = e+ mEru) g
dx x2
= xd_v:_l!_l!2_l!:_l!(2+l!)
dx
= 5 (zd: ) =— oi_x (Variables are separate)
Integrating, we get j v __ j dx | Jog C
eg g, g w2 +0) o g L.
1 1
= J + dv=-log |x| +log C
v(2) (-2)2+vv)
1 1 C
= Elog|1‘|—§10g|2+l‘|—logm
1 v | C vl C
= 2log 910 ogm = log 2_+v‘_210gm
v | C? ylx | C?
- 2+0| %% = |2t | T2
2
= Yy iC_
2x +y x2
= x2y = k(2x +y), where k ==+C2

Now, y =1 when x = 1. D2 M) =k@ML)+ 1D ie, k=1/3

. 1
The required solution is x%y = 3 2x+y) or 3x’y=2x+y.

Differential Equations

NOTES
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(D)

(D

Example 41. Solve: dy :M} y(I) = 1.
dx x2y+x)
Solution. We have QZM ie., ﬂ: 2y-—x )
dx x(2y +x) dx 2y+«x
. . . . dy dv
This is a homogeneous differential equation. y=uvx = —=v+x In
X X
1) = v+xﬂ_20x X _2v0-1
dx 2vx+x 9p+1
- L _220-1  2w-1-2°-v 2 -u+l
dx 2v+1 2v+1 20+ 1
= % dv=— dax (Variables are separate)
2v° -v+1 x
Integrating, we get j _Zvtl dv=— J .
2% -v+1
= J‘%dl\:_loglxw_kc
2v° -v+1
Now J‘ 2v+1 di __J‘ (4v—1)+3
w2 -v+1 2% —v+ 1

4v— 3 dv
"2 2v —v+1 2 20° -v+1

:110g|2l‘2—l‘+1|+§"‘—dv
2 4 17 7
v-—| +——
(o-3) *16
1
=llog|20 —v+1|+ tan~! "4
2 4 f/4 V774
1 3 -1
==log |20 —v+ 1| + —= tan!
2 " 77 J7
1 2 3 41)—1
(1 = —log|2v° —v+ 1|+ —= tan! —=— =—1log |x| + C
2 ﬁ J7 ¢
1 2y2 _y., 43’_
= — log | =~ tan~! =—log [x| + C
9 108 2 J_ J_ g
=>llog|2y2—xy+x2|—loglxlJrit,an*1 4y_xz—longIJrC
2 J7 V7 x
1 3 4y —x
= —log |2y? —xy + 22| + — tan! =C
2 B Y ﬁ ﬁx
We have y =1 when x = 1.
1 3 4-1
2= =logl2-1+1]+—=tan!— =C
2 " 77 N

(2



C

Using (2), the required solution is

%log|2y2—xy+x2|+

d.
Solution of Homogeneous Differential Equation d_x = y(x1y)

1 3 3 Differential Equations
=—log2+ — tan! —

R N
i tan! _4y —* = 1 log 2 + 3 tan~! i NOTES
7 e 2 N

We have ﬂ = y(xly). (D)
dy
dx dv dv
Let x = vy. — =) +y—=v+y =
y & D +y & y &
dv dv )
1 = v+y=—— =y() =—=  (Variables are separate)
d yw -v y
Integrating both sides, we get j _dv =j dy + C.
Y -v y
= J‘L=log|y|+C,wherev=£
v -v y
x
This equation is solved and v is replaced by ;

Remarks 1. The equation % = y(x/y) can also be solved after interchanging x and y in
Y

the equation and again interchanging x and y in the solution of the given equation.
2. Sometimes, a given homogeneous differential equation is conveniently solved by

dx

expressing it in the form == = y(x/y).
dy
Example 42. Solve: dx _x sin =
dy 'y y
Solution. We have dx _ X +gin X NE))
dy y y
This is a homogeneous differential equation of the form — = y(x/y).
Let x=uvy dx _ +y@
dy dy
dv )
1 = vty— =v+smuv
dy
v . _dy .
= y— =sinv = cosecvdv=-= (Variables are separate)
dy y
. dy
Integrating, we get j cosecv dv = J — +log C.
Y

= log

tan%‘ZIOg lyl +1og C

Self-Instructional Material 43



Ordinary Differential

Equations = log | tan x ‘ =log C |yl
2y
= tan > |=Cly| = tan— =+C
NOTES Moy Y Moy T
= tan 21 =C,y. (Putting C, =+C)
y

Example 43. Solve: 2ye™ dx + (y — 2xe™)dy = 0.
Solution. We have 2ye dx + (y — 2xe) dy = 0.

dx 2xe™ —y dx  2(x/y)e™ —1
= == 2 o o2 o e
dy 2ye™” dy 2e*Y @

This is a homogeneous differential equation of the form % = y(x/y).
Ly

Let x=uy. %: )+ T

Y

2ve” —1
m = r+y3—;’= e

dv 2pe” -1 \
- Ydy = 2"

do_ 1 2evdv = 1d
= Ydy = o = e,l‘——;y

Integrating, we get '[ 2e" dv = — J 1 dy + C.
Y
= 2e=—log|y|+C = 2e+log|y|=C.

Example 44. Solve: (1 +e*?)dx + e [1 - f) dy = 0.
Yy

y

ex/y(l—xj
dx ___ \ y) (D

= ox _ :
dy 1+e™

Solution. We have (1 + e?)dx + e*? (1— f) dy =0.

This is a homogeneous differential equation of the form % =y(x/y).
Y

Let x=uy @ZI‘WLJ’@
dy dy
1) =  p+y®-_ed-v
dy 1+e€°
dv —e’+ve’ —e” +ve’ —v—-ve’
= y—=——— _p=
dy 1+e° 1+e€°
dv —-e’'-v
= y—:—
dy 1+e¢*
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v d Differential Equations

= 1+e dv=— @& (Variables are separate)

v+e’ y
= J1+e dl‘:—J‘ﬂ-ﬁ-lOgC

v+e’ y NOTES
= log|v+e'|==log|y|+log C
= loglv+e“|=log|—c| = ly@+e)|=C

Y

= y(f + ex/yj =+C = x+ye””=C,. (Putting C, = +C)

Yy

dx . .
Example 45. Solve: y ax sin (fJ +y—xsin (fj =0,ym/2 = 1.
dy y y

Solution. We have

y@sin (fJ +y - xsin (fJZO‘
dy y y

- dx _ xsin(x/y)—y N dx _ (x/y)sin(x/y) -1
dy y sin (x/y) dy sin (x/y)

This is a homogeneous differential equation of the form % = y(x/y).
Y

dx dv
Let X = Uy. . —=p+ -
' dy Yy
1) = - dv _vsinv-1 @_vsinv—liv
Ydy s Y&~ sinv
= y@:* .1 = Sinvdv:—ﬂ
dy sin v y
. . B dy
Integrating, we get jsm v dv——J‘_+Q
Y
= —cosv=—log|y|+C
= log | ¥ | = cos (x/y) + C
We have y=1when x=m/2.
2 = log | 1] = cos (%) +C
= 0=0+C = C=0

(2) = log|y|=cos (x/y). This is the required solution.

EXERCISE 1
Solve the following differential equations (. No. 1-25):
1. Bxy +yd)dx+ (2 + xy)dy =0 2. 2xyy’ = x% + 3y?
3. (x2+ xy)dy = (x2 + y2)dx 4. (2 —yHdx+2xy dy=0
2
5.xd—y+y—=y 6. %y dx— (x> + y¥)dy =0
dx x
dy dy dy
7. 2 e 8.y—x— =x+ e
g T YT T

(D)

(2
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Ordinary Differential dy ylx+y) dy
Equations 9. o e 2 10. x e y(logy —logx+1)

1. 2 oY 2 12. o— ) P = v toy
dx «x x dx
NOTES 13. a2y, =a? —2y? + xy 14. (2® —yHdx+xy dy=0
15. x®dy + y(x+3y)dx=0 16. y dx + x(logl]dyfzxdy:()
x
17. xy[log yjdx +[y2 - x21log yjdy: 0 18. ycosydx—(x sin 2 + cosyj dy=0
x x x x y x x
19. (y? — 2xy)dx = (x* — 2xy)dy 20. y2dx+ (x> —xy +y)dy =0
21. 2xy dx+ (x2+2y>)dy =0 22. (y2 —x?)dy = 3xy dx
23. xcos (ZJ By cos (l) +x 24. (x — y)dy — (x+ y)dx =0
x ) dx x
25. xﬂ—y+xsinl =0.
dx x
Solve the following initial value problems (Q. No. 26-45):

26. 2+ P B ) 2 4 842 2 23 v = 0 v(]) =

Lyt P yD=1 27. x(x* + 3y9)dx + y(y* + 3x%)dy =0, y(1) = 1

d
28. (v —2:%y)dx + (¥t — 20y dy =0, y(1) =1 29. xe¥’* —y +x d—i =0, y(e)=0

30. (xe’*+y)dx=xdy, y1)=1 31. (x+y)dy+ (x—y)dx=0,y1) =1
32. 2xy+y2—2x2& =0,y(1)=2 33. 2x2& —2xy+y2=0,y() =e
dx dx
34. 2ye dx + (y — 2xe™)dy = 0, y(0) = 1 35. (2 —yHdx+2xydy=0,y(1) =1
36. 22 P~ 3200y Y1y =1 37. D _ Y | cosec L =0, y(1)=0
dx dx x x

38. (xdy—y dx)y sin BAS (y dx + x dy)x cos l, y@B)=m
x x

39. x® i xsin L =0, y@ =1 10. + % gin (lJ +x—ysin (lJ =0, y(1) ==
dx x x x x 2
41. Bxy+y) dx+ (2 +x)dy=0, y(1) =1 42. x cos (lJ 9 — vt ycos (lJ,y(l) =T
x ) dx x 4
13, (2+ w)dy = (2 +y)d, y(1) = 0 1 =)D =t 25,5 =0
X
45. (x2+ y?)dy —xy dx=0, y(0)=1.
Answers
1. x*y@x+y)=C 2. 22+ y>=Cx®
3. log |x| =log(x—y)2+l+C 4. x=C(x%+y?
X
_x xd
5. loglxl—y+C 6.3y—3—log|y|+C
1
7. ylog x| +x+ Cy=0 8.Elog(x2+y2)+tan*1lZC1
X
9. xy%=C(y— )2 10. log £ = Cx
X
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11. x=Csin < 12. log 2%+ xy + 92| — 243 tan~1 21 2Y = ¢
x J3 x
1 x+x/_y
13. =log |x| +C 14. y2 = x2(C — 2 log| x|
2\/— g y ( glxl)
15. a2y=C(y+2%) 16. Cy=log%—1
x? y 1 N
17. logy*+ —|log=+-| =C 18. ysin = =C
y x 2 x
19. x%y—xy?=0C 20. y= Ce tan™ (y/x)
21. 3xZy+2y3=C 22. y2(4a2 —y2)3 =C
23. sin 2 =log |x| +C 24. tan_ll=llog (x2+y2)+C
x x 2
25. 1—cosl=gsinl 26.1—10g|y|=1
X x X x
27. x*+6x%y2+y4=8 28. % + y3 = 2xy
1
29. y=-xloglog | x| 30. log | x| = T
31. log (x2+ %)+ 2tan! Y g + log 2
X
2x
32. 7+log|x|=1 33. ylog ex=2x
34. 2" +log |yl =2 35. a2+ y2=2x
36. 2y=x(x+y) 37. cos— 1+log|x|
38. 2xycos = =3n 39. x(cosecl—cotl) =2
X x x
40. log|x|=cos ¥ 41. 3%y + 2%y = 3
X
Y 1 y _
42. sin = =log| x|+ — 43. = +2log|x —y|-log|x|=
. glxl 72 . gl y|—log|x|
1
44. log|x2+y2+ry|+fn J3 tan X+ 2y
2 J3x
45. x*=2y?logy.
d ax+hby+c a L
Solution of &Y =& YT \where &t by Reducing it to a

dx a,x+ by +ec, a, b,
Homogeneous Equation
Consider the differential equation

B _axtbyta e L b (D
dx  agx +boy +cy ay by
We substitute x = X + h and y = Y + k, where h and k are constants to be
properly chosen.
dy _ dy L, aY dX _ dY ~dY

ax dY dxX  dx dX dX
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Ordinary Differential ) dY _ afX+h)+b(Y+h) +c

; 1) = -
Equations (M dX a;X+h)+b,(Y+Ek)+c
- dY _ a1X +blY+(alh+blk+Cl) 2)
dX  aX +b,Y +(agh + byk +cy)
NOTES S o 2

The constants h and k are chosen so that a;h + bk + ¢, = 0 and
a,h + b,k +c,=0.
dY _ aX+HY
dX a,X+bY
This is a homogeneous differential equation and can be solved by putting

2 = .. (3)

Y=VX.
Y=VX = %=V+Xj—§
o - vl sy
= AV _a+b V. a3 +bV -aV -5V
dX ag+bV ay + b,V
- a1+(b1af ;;;2\}7— by V? dV:dYX )

In the differential equation (4), the variables X and V are separated.
b,V
G2 ¥ 02 5 ax +C.
a1+(bl—a2)V—bgV X
J‘ as + b,V
a, + (b, — ay)V -b,V?

Integrating (4), we get J dv = J

= dV=log |X]| +C,

where V=YX, X=x-hand Y=y- k.
This represents the general solution of the differential equation (1).

b . . . . d +by+ . .
Remark. If 21 =L in the differential equation W _BXTOUVY T hen it can be easily
a, by X agx + by + ey

solved by putting z=a,x+ b,y or z=a,x + b,y.

dy _ ax+by+ec, where M % b

Working Steps for Solving — 2
& S%ep & Ux a,x+b,y+ec, a, b,
StepI. Putx=X+handy=Y + k. Given differential equation reduces to

dy o X +bY +(ah +bk +c;)
dX  a,X +bY +(ayh +byk +cy)

Step II. Solve a,h + b,k + ¢, =0 and a,h + b,k + ¢, = 0 to get the values of h

and k. The resultant equation av _ M

is a homogeneous
dX a, X +bY

differential equation.

Step ITI. PutY =VX. This gives a differential equation in X and V with variables
separated.

Step IV. Solve this differential equation and put V = Y/X, X = x — h and
Y =y — k to get the answer in original variables x and y.
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SOLVED EXAMPLES

dy x+2y-5
dx  Zx+y—4
dy x+2y-5
dx  2x+y-4

Example 46. Solve:

(D)

Solution. We have

Hereﬂ:land ﬁ22:2 ﬂiﬁ
(02} 2 bz 1 Qo bZ
Letx=X+h and y=Y+k.
d_y:d_yxd_YXd—lexd—Yxlzd—Y
dc dY dX dx dX dX
dY X+h)+2(Y+Ek)-5
M = o=
dX 2X+h)+(Y+k)-4
. dY X +2Y+(h+2k-5) @
dX 2X+Y+Qh+k-4)
Let h and k be such that h+ 2k —5=0and 2h +k—-4=0.
h=1Lk=2 (On simplification)
. dY X+2Y
@ = dX " 2X+Y )
This is a homogeneous differential equation.
dY dV
7 _ . =z - - e
Let Y=VX. .. aX V+XdX
dV _ X+2(VX) 1+2V
i +X_: =
@ = VX X Toxavx 24V
. dV _1+2V _V_1+2V-2V-V2 1-V?
dX ~ 2+V B 2+V 2+V
24V dX _[ 2+V ¢ dX
= 1-V2 dv = x = 1_ve dvV= X +log C
(Variables are separate)
__2+V
= (1+V)(1_V)dV—log|X|+logC
[ |55+ 5 | dV = log CIX|
= 1+V)@  20-v) |4 7%
1 3 log|1-V|
= 210g|1+V|+2- 3 =log C|X]|
1 i _1 C2X2
= 0g (1—V)3 = log
1+Y/X X+Y
T o2xe — (2
= a-vxp | © = xoyp ©
= X+Y=C,X-Y)?, whereC,==C?
= @-D+@r-2=C((x-1)—(y-2)°
= x+y-3=C,(x-y+1)>

Differential Equations

NOTES
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Ordinary Differential EXERCISE J

Equations
Solve the following differential equations:
1 dy _x+2y-3 9 dy _y-x+1
NOTES " dx 2x+y+3 "dx y+x-5
3 dy _x-y+1 4dy:2x—y+1
" odx x+y-2 “dx x+2y-3
Answers
3 Y- 2 1 2 2
1. x+y=Cx—y+6) 2. tan 3+§log(x +3y2—6x—4y+13)=C
x—
3. y?+2xy—a2-2x—4y=C 4. x> —y?—xy+x+3y=C.

SOLUTION OF LINEAR DIFFERENTIAL EQUATION

d
d—i + Py= Q, WHERE P AND Q ARE FUNCTIONS OF x

OR CONSTANTS

dy _
Let dx +Py=Q (D)

be a linear differential equation, where P and Q are functions of x or constants.
Multiplying both sides of (1) by e' P4 we get

Jded_y+ | Pdx — [Pdx
¢ de € Py=Qe '

N eJdeZ_i’C + %(eJde)‘ y=QelPd ( %J.de: P)
. %(yeJde):QeJde

= J [% (yeJde)] deJ Qe!Pdx dy + C

= yeJ de:j er Pds dx + C.

This is the general solution of linear differential equation (1). The function e! P

is called the integrating factor (I.F.) of (1).
Thus, the solution of (1) can also be written as

y(LF.) = J' Q(LF.)dx + C.

log f(x)

Remark. In evaluating integrating factor (I.F.), the results e = f(x) is frequently

used.
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Working Steps for Solving Z‘y +Py=Q

X

Step I.  If the coefficient of d—y is not unity, it must be made unity by dividing
x
. - dy
the equation by the coefficient of e
x
Step II. Identify P and Q and make sure that these are functions of x or
constants.

Step ITII. Evaluate | P dx.

Step IV. Find ! P4 This is the integrating factor (L.F.).
Step V. Put the value of LF. in the general solution yI.F.) = Q@.F.) dx + C and
simplify it. This gives the general solution of the given differential

NOTES

equation.
SOLVED EXAMPLES
dy .
Example 47. Solve: Ir + 2y =e™,
. dy .
Solution. We have I + 2y =e™ (D)
This is a linear differential equation. Here P =2 and Q = e™.
.[de =_[2 dx = 2x o L. =elPdx = pox
The solution of (1) is y(@LF.) = [QLF) dx + C.
= yers = J-e_x e* dx+C = ye¥= j e“dx+ C
= ye2 ="+ C = y=e*+ Ce?
Example 48. Solve: y — 2y =cos 3x.
. dy
Solution. We have P 2y = cos 3x. (D)
This is a linear differential equation. Here P = -2 and Q = cos 3x.
[Pdx=[-2dv=-2x - IF.=eP® =¢
The solution of (1) is y(LF) = [ QILF) dx +C,
= ye 2 = jcos 3x .e¥de+(C = ye?= J'e—zx cos 3x dx + C
= y=eX J e 2 cos 3x dx + Ce® (2
Let I= J.e_zx cos 3x dx
. . _Zx .
_ g Sindx J‘_2 ., sin3x _esindx 2 J‘ ox .
I=e¢ 3 e 3 dx 3 +3 e sin 3x dx

Self-Instructional Material
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Ordinary Differential
Equations

NOTES
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2% - _
e ** sin 3x N 2| 9 cos 3x ) J‘_ 92" cos 3x d
3 3 3
—2x 9 4
_¢ sndx 2 e cos 3x—— j e cos 3x dx
3 9 9
e—Zx ] 4
1= 9 (3s1n3x—2c053x)—§l
4 e_zx e—2x
= (1+§)I= Bsmn3x—2cos3x) = I= (3 sin 3x — 2 cos 3x)
9 13
—2x
2 = y=eX { 13 (3 sin 3x — 2 cos 3x)} + Ce2

1
y=13 (3 sin 3x - 2 cos 3x) + Ce2~.

d
Example 49. Solve: é +ay = e,

d
Solution. We have % +ay =e™, NE))
This is a linear differential equation. Here P =a and Q = ™.

[Pdc=ladx=ax .. LF. = &/Pd = pa

The solution of (1) is  y(I.F.) = jQ(I.F.) dx + C.

= yer = jemx ede+C = yew= je(“’”)x dx +C

e(a-H’n)x e—ax . e(a+m)x

+C = y=———— +C-e™
at+m a+m

= yerr =

(Provided a + m # 0)

emx

= y= + Ce .
a+m

This is the required solution of the given differential equation.

d
If a + m =0, then the given differential equation (1) becomes % —my = e™,
Here P =-m and Q =e™.

J P deI —mdy=-mx - LF. = P —gm

The solution is ye™* = J e e dx + C.

a+m=0.

= yzeme1~dx+C:| = y=e"™(x + C).

This is the required solution of the given differential equation provided
d

Example 50. Solve: LY g
dx «x
d

Solution. We have LY 9y (D
dx «x



) 1 Differential Equations
This is a linear differential equation. Here P = — < and Q = 2x2
1 1 .
J‘dezj‘f;dxz—loglxI:log; (Assuming x > 0)
gl 1 NOTES
- [F.=ePP e * =2
X
The solution of (1) is
y(.F)= j QULF)dx+C. . y(%}j 2x” (%) dx +C
Y-9|xdx+C Y x* 8
= ;— jx X + = ;—2-?+C = y=x°+Cx.

d
Example 51. Solve: cos® x % +y =tan x.
. 9 dy _ . dy 2 e — 2
Solution. We have cos xd— +y=tanx. .. I + y sec? x = tan x sec? x
X
..(1)
This is a linear differential equation. Here P =sec? x and Q = tan x sec? x.

[Pde=fsec?xde=tanx . LF. =e¢ Pd=gtanx
The solution of (1) is y(LF.) = [ QELF) dx + C.
yeran ¥ = j tan x sec? x ef*2 * dx + C (2

Let I= j tan x sec? x et~ dyx. z=tanx = dz=sec?xdx

1= J ze? dz=zerJ‘ l.erdz
=z—-e=(z—1) €= (tan x — 1) gtan ¥
2 = yetar* = (tan x — 1)etar* + C
= y=tanx-1+ Cetn~

Example 52. Solve: (x%-1) Z—y +2x+ 2y =2x+1).
X

Solution. We have (x?—1) Z—y + 2+ 2y =2(x + 1).
X

dy  2x+2) _ 2
ar "y YT ad -
.. . . . . 2x +2) 2
This is a linear differential equation. Here P = 21 and Q= -1
dexZI 2(§+2) deI( 8 1 de
x° =1 x-1 x+1
13
=3log (x—1)—log (x + 1) = log (x—1)
x+1
(Assuming x — 1, x+ 1> 0)
(x-1°
log x+1 :(.’X?—].)S

_ JPdx —
ILF. =e e o1

The solution of (1) is y(L.F.) = j QAF.) dx + C.
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Ordinary Differential
Equations

NOTES
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x-1° [ 2 (x-1) o xt-2x+1
x+1 _Jx—l' x+1 de+C —2_[de+0
2
:2](x—3+ ilex+C:2{%—3x+4log(x+l) +C
1338
@-D" _ 2 6x+8log (x+1)+C.
x+1

. dy
sinx —— + 3y =cos x.
X e Y

. dy
X+ = X.
sin v — - 3y =cos x

Example 53. Solve:

Solution. We have

dy
- + X =cot
i 3y cosec x = cot x

(1)

This is a linear differential equation. Here P = 3cosec x and Q =cot x.

J deZJ BCOSecxdeSIOgtan%=logtan3%

3 X
IF = eJde _ elogtan 9 _ tan3 f
2
The solution of (1) is y(LF.) = [ QELF.) dx + C.
x X 1-tan? ¥ X
= ytan3—=Jcotxtan3—dx+C=J ctan® = dx + C
2 2 92t X 2
an =

25 tan* —) dx+C

I/
I
o)
=}

tan? % — tan® %(sec2 X lﬂ dx+ C

3 )
2
3 )
2 2
:%J‘ _2tan2%—tan2%seczg] dx + C
:%J. _2(sec2%—1)—tan2%sec2%} dx + C
1 2 1 x
] __2 _Z d z - 3 X
2[ tan X 3tan 2}+C Ztan2 X — 3tan 2+C
ytan3£=2tanf—x Lian3 X 4+
2 9 2
= (y+%) tan3%=2tan%—x+0‘
_2\/;
Example 54. Solve: | £ -y dx =1 (x=0)
Ve o x| dy
—oJx -2Jx
Solution. Wehave |€¢  _ ¥ dx _q ie., dy _e -
x x| dy N
dy 1 eV
= 4| =y = ..(D
dx ( x}y Jx



_2\/;
This is a linear differential equation. Here P = and Q= eT‘
x

1
N

[ Pax- _[ _dx BN T § P R
The solution of (1) i1s y(I.F.) = j QIF)dx+C.
_zﬁ
= yez‘/;:J‘ eT.ez‘/;dx+C:J‘x_mdx+C:2\/;+C

yez‘/; = Zx/; + C

Example 55. Solve: xj—y +y-x+xycotx=0 (x=#0).
X

Solution. We have xﬂ+y—x+xycotx=0 e, dy+( +cotxjy 1.
x

dx dx
..(1)
This is a linear differential equation. Here P = 1, cotx and Q=1.
x
j Pdx = j (l+cotxj dx=log |x| +log |sin x|
X
=log |x sin x| =log (x sin x) (Assuming x sin x > 0)
ILF. = eJ = = elog (wsin2) = y gin x
The solution of (1) i1s y(I.F.) = J QI.F.)dx+C-.
= y(xsinx)=j1~(xsinx)dx+C
=x(—cos x) — J l-(—cosx)dx+C =—xcosx+sinx+ C
= y=-cotx+ l + C .
x «xsinx
dy . _ T
Example 56. Solve: o 3y cot x =sin 2x, y = 2 when x = 3
X
Solution. We have ﬂ — (3 cot x)y = sin 2x. (D)
X

This is a linear differential equation. Here P =-3 cot x and Q = sin 2x.
j Pdx = J —3cotx dx=—-3log |sin x| =3 log sin x = log (sin x)~°

(Assuming sin x > ()

LF el B

. elog (sin )~ — (sin x)73
The solution of (1) is
y(LF.) = j QLF.) dx +C.
= y(sin x) 3 = J sin 2x(sin ) dx + C
. -1
= ZJ‘ (sinx) 2 cosxdx+C = 2%+C

Self-Instructional Material
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Ordinary Differential
Equations

NOTES
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1.

. y=-2sin?x+ C sin® x (2
Now, y = 2 when x = /2.
2 =
2 =

2=—2sin2g+csini’>g - 2=2+C(1) = C=4

y=-2sin? x + 4 sin?® x.

d i
Example 57. Solve: tan x d_y =2ctanx +x°—y, y =0 when x = PR

x
Solution. We have

d
tan x =2 =9y tan x + x% —y. (D
dx
dy x° y
L ox+ -
- dx *Ttanx tanx

d
o A (cot x) y = 2x + &2 cot x.
dx

This is a linear differential equation. Here P =cot x, and Q =2x+ x? cot x.

dex = f cot x dx =log | sin x| = log sin x (Assuming sin

x>0)
- LF. = eIde = e!®sn* —gin x
The solution of (1) is
yIF)= [Q@F)dx+C.

= ysinx=j(2x+x2cotx)sinxdx+(}
= ysinx=J2xsinxdx+.[x2cosxdx+C

= .[2x sin x dx + [xz sin x —I2x sin x dx] +C

=x?sinx+C
= y=x%+ C cosec x (2

Now, y:0whenx=g‘

2
00 o0

= 0= (5) + C cosec 2
2 2

- o=24+c. = c=-1L
4 4

2

2 = y=x2— % cosec x.

EXERCISE K

Solve the following differential equations (Q. No. 1-2):

@) % + 2y =¥ @) % —2y=e¥*



2.

... dy

— + 2y =6e*
(1) dx y e
. dy

= 4+y=1
@) ac Y

... dy
4+ v = 3
(22)) dx y=e

() 4 Q + 8y =bHe 3
dx
. dy
=
() dr y=e

. dy
— —4y=e".
@) R

Solve the following differential equations (. No. 3-15):

3.

4.

&

&

®

10.

11.

12.

. dy
= ty=2-;
@) de Y x

@) xdy+ (y—x%)dx=0

(i)&+2y=sinx

dx
(iii)&+2y=xe4x

dx

~dy  1+xlogx
e
(iii)ﬂ+y=cosx—sinx

dx

. dy y

— _ 2 =97

@ dr X x
Ay Y2

—~ 4+ < =
(@222) dx @ x X
(i)secxﬂ—yzsinx

dx

(iii)xﬂ + 2y =x2log x
dx
(i)ﬂzytanx—2 sin x
dx
(iii)d—y—ytanxze’“
dx
. dy
2 y=xt1
) ¥5E —y=x

) x% + 2y =«

dy

(@) xlogx — +y=2log x
dx
e dy 3x2 sin2 x
_ -
(W) dx 1+ x3 YT x3
N 4x 1
i) S+ y=
dx x2+1 (x2 +1)3
dy y 1

WD 0 " Tlogx  x

.. =x+1
(L)xdx—ay—x

oy
(1) dx vy tan x = sin x

. dx
@) (y+3x3)— =x
dy
@v) xdy — (y + 2x%)dx =0

(ii)&—yzcosx

dx
(iv)&+y=cos 2x
dx
.. dy 1+sinx
i) =~ +y=——"
()dx Y 1+cosx

(iv)x% + 2y =xcos x
x

) 2x% +y=6x"
X

. dy y
v) = + 2 =3x2
( )dx on
(ii)ﬂ+l=ex

dx X
sin x

@iv) Q + Y =cosx+
dx «x x

. d
(i) d_y +ysecx=tan x
X
(tv) cos® x Z—y + y cos x =sin x
x
@) (1 + xd)dy + 2xy dx = cot x dx

d
() (1 + x2) d_i +y=tanlx

(ii) ﬁ%+ y=e

d.
() (1 +2%) G0+ y = etant

(i) dy . 4x 1
1) — =
dx  x2+1° (x2 + 1)2

o 2 P

@v) dx +ytan x = 2x + x° tan x
. dy ‘

@) dx —ytan x =2 sin x

; Q+ tx=2
() dx ycot x =2 cos x

Differential Equations

NOTES
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Ordinary Differential ) dy 2 . dy
Equations 13. () xlogx—=+y=—logx @) (= 1) —— + 2xy =
dx x dx

x2 -1

) d . d
14. (1) (2 + l)d—i’+2xy=‘/x2+4 (u)xlogxd—i’ +y=logx
NOTES

x+ycosx

(D) dy + ytan x = x2 cos?x @v) dy + =0
dx d

X 1+sinx

d
2x (ii)d—i’+ycotx=x2cotx+2x

15. (i) sinx Q + y cos x = cos x sin
dx
dy
@) (14 x2) T 2xy = (2 + 22+ 1)
d
av) (1 —x?) d_:o)c, + xy = ax.
Solve the following initial value problems (Q.No. 16-18):
R PPN o dy ] )
. () x d Y=+ 1e*y1)=0 @) Zn + y cot x = 4x cosec x, y(n/2) =0
x

@11) x & +y =xcosx+sinx ym?2) =1
dx
SN (a2 dy 4 502
(v) &+ 1) dx 2xy = (x* +2x° + 1 cos x, ¥(0)=0
. dy . L dy
17. (i) 5—+ 2y tanx =sinx, y(w3) =0 (i) = + vy sec? x = tan x sec? x, y(0) = 1
dx dx
o dy _ _ . dy _ 9 _
() = —y=cos x,y(0)=1 )x==+2y=a*,y2) =1
dx dx

‘ d, 1 .. d
18. (z)(1+x2)d—i+2xy=rxz,y(1):0 (u)%ﬂvcotx =2x+a% cot x, x# 0, y/2) =0

@@ii) (1 +y + x%y)dx + (x + 2)dy = 0, y(1) =0
(iv) cos x dy = sin x(cos x — 2y)dx, y(m/3) = 0.

Answers
4
1. Oy= % + Ce 2 1) y = e + Ce*
e L N B L
@) y=2e* + Ce=* (w)y——ze ¥+ Ce =¥
i . 1
2. (MHy=1+Ce™ ) y= 3 e*+ Ce™
1 - . 1
) y=—= e 3%+ Ce™ (V) y=——= e+ Ce¥
2 3
3. ()y=3-x+Ce™ () y=3x2+ Cx
2 C .
) y=—+— (v) y =2x% + Cx
4 x
4. W) y= % (2 sin x — cos x) + Ce 2 @) y= % (sin x — cos x) + Ce*
1 1 1 i
I11) y = Zxedx — —edx 4 Ce—2x (Iv) y= = (2 sin 2x + cos 2x) + Ce™
6 36 5
5. (@) y=logx+ Ce™ (i) y =tan % + Ce™
(1) y =cos x + Ce™ () yx2= (22— 2) sin x + 2x cos x + C
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10.

11.

12.

13.

14.

15.

16.

17.

18.

) . 6 C
(L)y:x3+Cx (u)y:_x3+_
7 Jx
x3  C . 6 C
11 = — 4+ — 129 =—x3+—
() y T )y 7 s
() y+1+sinx=Cesin® (ii)yzx_le’c+g
x
N 1 ,, C . . C
(m)y—zx loglxl—l—Gx +F (w)y—smx+;
() y cos x = 252 4 ¢ Giyy=1-—*=C

sec x + tan x

X
(Ti1) y cos x = % (sinx+cosx) +C (v) y=tan x—1 + Cetan«

@) y=xlog|x|-1+Cx @) (1 +x2)y =1log |sin x| + C
2
x C _
@iy =2tz (iv) y=tanlx— 1+ Ce tan"'x
x
() y log x = (log %)% + C (i) ye2¥* =2Jx + C

. . 1 _
@) y(1 + x%) = %(x— sin x cos x) + C (iv) yetan™+ = EeQ tanlx 4 (3

@) yx2+ 12 =tanlx+C @) ya2+ 1)2=—x+C
@) y= B log x + () y=x2+ Ccos x
2 log x
. x 1 .. 1
@y=——-—+0Cx* (1) y=— — cos 2x sec x + C sec x
l1-a¢ a 2
. 1
(1) y =cos x + C cos? x (w)y=—§cos 2x cosec x + C cosec x
() ylog x=— 218% 2, (i) ya? = 1) = log | *=L | + ¢
x x x+1

2
<i>y<x2+1>=x—vx2+4+210g lx+ 4] +C

.. 1 .
(u)yzalogx+ @111) y sec x = (x*— 2) sin x + 2x cos x + C

log x

2
@iv) (1+sinx)y+%=C

1

) y= 3 sin? x + C cosec x (1) y=x2+ C cosec x
@) y=1A+x)(x+tan 1x+ C) (V) y=a+ Cy1—x2

@) y=xel—e™ (i) y sin x = 2x2% — 2/2
@11) y =sin x @(v) y=(x*+ 1) sin x

() y = cos x — 2cos? x (1) y=tan x — 1 + ¢ tanx

1 3 , ,
(I11) y = = (sin x —cos x) + Eex @v) 4y = «x

2
@) 1 +x%)y=tanlx—m/4 1) y=x>— —
4 sin x

@11) xy + tan! x = % @1v) y = cos x — 2 cos? x.

Differential Equations

NOTES
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Ordinary Differential

Equations Hines

18. (i1) Here, I.F. = sin «x.
Solution is y sin x = J (2x + x2 cot x) sin x dx + C.

NOTES
J. (2x + x2% cot x) sin x dx = J. 2x sin x dx + J. x2 cos x dx

= J. (sin x)2x dx + J. x2 cos x dx

= ((sin x)a - J (cos x)x2 dx) + J %2 cos x dx = a2 sin x.

(i1) We have (1 + y + x2y)dx + (x + x*)dy = 0.
= (1+yQ+a2))dx+x(1+x2)dy=0

d_y:_1+y(1+x2) 3 1 1
= dx x(1+x2) T x1+x2)

X

d
Solution of d_i + Py = Qy", where P and Q are Functions of x or

Constants, by Reducing it to a Linear Differential Equation

) ) . . dy
Consider the differential equation Te + Py = Qy", (1)
where P and Q are functions of x or constants and n # 0, 1.

Equation (1) is known as ‘Bernoulli’s equation’.

d
Dividing (1) by y*, we get  y™ é + Pyl =Q. (2
Let z =y
dz dy dy 1 dz
22— (n+ -n < —n 2 — e
dx G+ Dy dx or ¥y dx 1-n dx
1 d,
@ = ‘Z_i +P2=Q = ZHPA-mz=Qd-m. .O)

(3) is a linear differential equation with z as the dependent variable.

Working Steps for Solving Z‘y + Py = Qf

X

d
Step I. Divide the equation by y* and get y™ é + Py "l =Q (D)
dz dy dy 1 dz
— antl . - —(_ —n —n — hdad
Step II. Putz=y"* . T (=n+ 1)y e T Y dr  Iondr

Putting the values of y™*! and y™ Z—y in (1), we get
X

& +P(1-—n)z=Q1 —n). .2
dx

Step III. (2) is a linear differential equation with dependent variable z.
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d
Example 58. Solve: 2y zy ==
de 3

S
2

Solution. We have LA y = = NE))
37y

This is a Bernoulli’s equation.

S d 2
Multiplying (1) by ﬁ, we get J; % + 3 Y32 =y (2
dz 3 dy dy 2 dz
— 32 gz _ 9 e &Y A
Let z=y"% dx 2 Y dx or Y dx T 3 dx
2 dz 2 dz
2 = §a+§z—x = E+z—§x ..(3)
(3) is a linear differential equation with z as the dependent variable.
3

HereP=1 and QZEx‘
JdeZJl-dx=x and we have LF. =e/FP% =

The solution of 3)is ~ 2(LF.) = j Q (LF) dx + C.

3 3
= zexZJEx-e”dx+C=>y3’2ex=§[xex—'l‘l-exdx}vLC
3 : 3
= Y32 et = 5 @=De'+C = 2= g (-1 +Ce
Example 59. Solve: y(x%y + e¥)dx — e* dy = 0.
Solution. We have y(x2y + e"dx —e* dy =0
2 x 2.2
- dy _yyre) o dy _xy
dx e’ dx e*
dy _ x2 9
= e T Chy= [e—ny (D)
This is a Bernoulli’s equation.
o 1 dy 1 52
2 e A AN
Dividing (1) by y?, we get 7 dx + (1) y T ..(2)
1 dz dy 1 dy dz
_ = R T w22
Let z Y Y (-Dy o OF 7 dx dx
dz x2 dz x2
@2 = @ TEbr= = aJrLz——e—gC -3

(3) is a linear differential equation with dependent variable z.
2

Here P=1 and QZ—x—x‘
e

dexZIIdxzx and we have LF, = e Pd¥ =«
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Ordinary Differential ] )
Feuations The solution of (3) is  2(LF) = [ QELE) dx+C.
= zexZJ.(—e—xJexdx+C
NOTES
1 1 x°
= —exz—jx2dx+C = —e*=-"_+C.
y y 3
EXERCISE L
Solve the following differential equations:
dy vy dy vy _ y? dy x
1. ==+ = =42 2. == 4+ L= 3. — + =
dx «x Y dx x  x2 dx l—xzy x\/;
1
dy (2 _ 53 By en ™ Yty = a5
4. a+xy—x—3 5. dx+xy—ye2 sinx 6. dx+xy—xy.
Answers
1
1. —+logx=C 2. 2x—y = CaZy
xy
1 1
3. 3y —a2+1=C(1 a2 4. T =_~ +C
ﬁ y2x4 346
- lxz 1 9
5. e 2 =y(osx+C) 6.—4=1+062x.
Y

Solution of f'(y) % + Pfly) = Q, where P and Q are Functions of x or

Constants and f{y) is Some Function of y, by Reducing it to a Linear
Differential Equation

d
Consider the differential equation f’(y) é + Pf(y) =Q, NE))
where P and Q are functions of x or constants and f(y) is some function of y.
_ , dz _ ., . dy
Let z=f(y). . I =f'(y) dx
1 = = L p-q. (2
dx

(2) 1s a linear differential equation with z as the dependent variable.

Working Steps for Solving f'(y) Z—'y + Pf(y) = Q
Ix
_ Lodz o,y
Stepl Putz=f(y). .. I =f'(y) dx
Step II  Put the values of f(y) and f’(y) Z—z in the given differential equation

dz
. — +Pz=Q.
and get Tx Pz=Q

This is a linear differential equation with dependent variable z.
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SOLVED EXAMPLES Differential Equations

dy 1 &
Example 60. Solve: d + x 2
d 1 y NOTES
Solution. We have = + = = e—z‘ NE))
dx x «x
. 1 1
Dividing (1) by ¢”, we get  e? D +—eV=—.
dx «x x
Ldy (1) 1
= —eyavL( x)ey——x—z (2

(2) 1s a differential equation of the form f’(y) Z—i}c + Pf(y) = Q, where f(y) = e™.

dz dy
= =Y . —_— = _ Y =L
Let z=f(y) =e?. S e o
dz IR |
2 = T +( xJ s .3

(3) is a linear differential equation with z as the dependent variable.

HelrePZ—l and Q:—iz‘
X X

1 1
_[de:_[_; dx=—logx=log; (Assuming x > 0)
1
IF_eJde—elog;—l
X
The solution of (3) is  2(L.F.) = j QA.F) dx + C.
1 11 -y -2
— efy.—z'l‘——z.—dx+C - £ -_* ,¢
x x% x x -
eV 1 5
= —=—5+C = 2xe”=1+2Cx?
X 2x

Example 61. Solve: siny Z—y =cos y(I1 — x cos y).
X

Solution. We have siny Z—y =cos y(1 — x cos ¥).
X

dy

= sin y —— —cos y =—x cos? y ..(1)
dx
Dividing (1) by cos? y, we get s1n2y D coszy =—x.
cosy dx  cos”y
dy
= secytanya + (-1)secy =—x ..(2)

(2) 1s a differential equation of the form f’(y) Z—i}c + Pf(y) = Q, where f(y) =sec y.

B _ . dz dy
Let z =f(y) = sec y. . —secytany—dx
dz
2 = a + (-1)z=—x ..(3)

(3) is a linear differential equation with z as the dependent variable.
Here P=-1 and Q=-x.
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Ordi Di jal
inary Differentia j Pdx= j 1-dc=-x andwehave IF. =e'P% =cx

Equations
The solution of (3) is  z(LF.) = j QULF) dx + C.
NOTES = (sec o= [ - erde+C
x N . e _ . e
= e¥secy [x = jl _1dx}+C

. e
= e¥secy=xe™ — +C = secy=xt1+Ce~

Remark. Please note carefully the placing of cos ¥ on the LHS in equation (1). The
placing of x cos? y on the LIS of (1) will not reduce the given differential equation to the
desired form.

EXERCISE M
Solve the following differential equations:
dy _ dy 1
L. A+ P2 y1=erY 9 %y 1. _ 5
(1+x) I +1=e R
dy xZ+y? 41 dy .
3. i 4. 2tanya+xsm2y=x3<zos2y
dy 1 1 . dy 'y y
5, — +—t =—t 6. —-—=1 =—.
2 T tany 2 an y sin y il 0] 2 (log 7)?
Answers
1. e@(1+x)=e"+C 2. 2xy% + Ca?*y? =1
1l
3. y*+1=x2+Cx 4. tan2y=12-2+ Ce 2
3
5. 2xcosecy=1+ 2Cx? 6. (log y)>=— . + Ca?.
x
Hints

2 2

+y°+1

3. We have d_y SN S .
dx 2xy

d 24241 d 2 1 d 1
= 2y—y=w = 2y—y=x+y—+— = 2y—y+ -— |+ 1) =x
dx x dx x x dx x

Solution of Linear differential equation % + Px=Q, where Pand Q are

functions of y or constants

Let d—y+Px=Q (D)

be a linear differential equation, where P and Q are functions of y or constants.
Multiplying both sides of (1) by /P &, we get
el Py @+ el Py szQeJde.
dy
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jpay dx _d . jpq _O,iPd .. d _
= e yd—y+d—y(e y)-x—Qe Y [ d—yJ.de—PJ
= i(xejpdy)=QeJde

dy

d | P dy _ I P dy
N — (xe Ydy =] Qe dy +C

dy
= xe P =I (QeJde)dy+C.

This is the general solution of linear differential equation (1).
elPdvig called the integrating factor (I.F.) of (1).

Thus, the solution of (1) can also be written as x(I.F.) = J.Q(I.F.) dy + C.

Working Steps for Solving ZII—X +Px=Q
Y

StepI. Identify P and Q and make sure that these are functions of y or

constants.

Step II. Evaluate | P dy.
Step III. Find e/ 4. This is the integrating factor (LF.).
Step IV. Put the value of LF. in the general solution x(.F.) = | Q@.F.) dy + C and

simplify it. This gives the general solution of the given differential
equation.

SOLVED EXAMPLES

Example 62. Solve: y dx + (x —y%) dy = 0.

Solution. We have y dx + (x —y%)dy = 0.

dx dx 1

_+__3:0 —+_;:2 1
= ydy X—y = dy (ny y 1)

(1) is a linear differential equation of the form % +Px=Q.
Ly

Here, P= and Q =y2

L | =

J‘de:-"%dy:l()gy I‘F‘:eJde:elogy:y
(Assuming y > 0)

The solution of (1) is  x(L.F.) = j Q(ILF.)dy +C.

4

= xyZJyzydy+C = xy=yT+C‘

Example 63. Solve: (x + 3y?) Z_y =5,5>0.
X

Solution. We have (x + 3y?) Z—y =y.
X

Self-Instructional Material

Differential Equations

NOTES

65



Ordinary Differential
Equations

NOTES

66  Self-Instructional Material

= yj—;zx+3y2 = Z—:=—+3y = —+(——J;=3y (D

d
This is a linear differential equation of the form X px= Q.

dy

Here, P=- and Q= 3y.

1

y
1 1

_[de:_[—;dy=—logy=logy*1=log; >0 = lyl=y

LF =e/Pdy = gloglly = 1

Yy
The solution of () is ~ »(LF) = [ QELF) dy+ C.
1 1
= x(—J=j3y(—de+C = £=3y+C‘
Y y y
1
Example 64. Solve: y? dx +x-——=0.
dy y
Solution. We have y2@ +x - 1. 0.
dy y
dx 1 dx 1 1
= 2= = — | |la=— .1
Y dy y dy (sz y° M
(1) is a linear differential equation of the form % +Px=Q.
y
1 1
Here, P=— and Q=—.
Y Y
[pdy=] Lay=-1 W IR =P d =t
y y
The solution of () is  x(LF) = [ QLEF.)dy +C.
= xe Uy = j %e_l/y dy +C (2
y
Let I= j y%e_l/y dy
1 1
Let z=—— .. y=—— and dyzizdz
y z z
1
I=| -2%%. —dz=-| ze® dz
J -2t pdz=-]

= —[zez—j 1.¢7 dz] =—zft+eE=e(1-2)= 1/y[1+1J
Y

2) :xel’yzel’y(1+lJ+C = x=1+l+Ce1’y‘

Y y
2 tan~! dy
Example 65. Solve: (1 +y*)+(x—e y e 0.
1 2 tan~! dy
Solution. We have (1 +y?) + (x — e ) e =0.



1

dx -1 dx 1 etan’ Y
= 1+2_+ _ ptan Yy=0 =»> —+ X = (1
( y)d r-e dy 1+y? 1+ y2 )
. . . . . ) dx
Equation (1) is a linear differential equation of the form T +Px=Q.
Y
1 tan’ly
Here P= 5 and Qze 5
1+y 1+y
.[de:,[ 12dy=tan_1y o LF. =elPdy=gtan'y
1+y
The solution of (1) is x(.F.) = j QILF)dy + C.
1 etan’ly 1
= xet™ y:j 2.etan Ydy+C
1+y
= xelan 'y = j e?* dz + C, where z=tan 'y
- eZZ 2tan’1y 4 o
= xe® Y = 5 +C=—2 +C = 2xe™ ¥ = 2Ny 4 o(C,
Example 66. Solve: y dx — (x + 2y9)dy =0, y > 0 given that y = 1 when x = 2.
Solution. We have y dx— (x + 2y?)dy = 0.
= yd—x=x+2y2 = dx =£+2y=>d—x+(—ljx=2y (D)
dy dy vy dy y

(1) is a linear differential equation of the form % +Px=Q.
Y
1
Here P=—— and Q=2y.
Yy

1 1
jde:j—;dy:—logy=10gy*1=10g; >0 = |yl=y)

< |

The solution of (1) is ¥(F.) = j QAF.) dy + C.

= x(lJZJZy(ljdy+C = £=2y+C ..(2)
y y y

Nowy=1whenx=2. . (2 = %22(1)+C or C=0

Using (2), the required solution is % =2y +01ie., x =2y
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Equations

EXERCISE N

Solve the following differential equations:

NOTES

1.

‘ . dy
(@) y dx— (x+ 2y%)dy =0 @) @+ 2y%) 5= =y,5>0
@) By? —x)dy =y dx, y>0 @v) y* + (x - —IJ dy _ 0
y ) dx
(@) A +yHdx= (tan™' y — x)dy (i) (1 +y%) + (2xy —cot y) % =0
X
dy ‘ dy
— 3) — = —_— =
(i) (20~ 10y%) = +y=0 ) @ty - =1

(@) (1+y)dx+ (x— e ™ ¥)dy =0, 3(0)=0
@) A +y>)Hdx=(tan 'y —x)dy, y(1) =0
(111) (x — sin y)dy + (tan y)dx =0, y(0) = 0.

() dx +xcoty=2y+y2coty, (y#0),y0)= r
dy 2
Answers

(1) x=2y*+ Cy (ii) x=y>+ Cy

@) xy=y3+C vy x=1+y 1+ Celly
-1

() x=tanly— 1+ Ce W0 Y (i) x(1 +y%) =log | sin y | + C

@1) x=2y>+ Cy 2 vy x+y—1=Ce”
-1 _

) xe®™ Y =tan-ly (ii) (v —tan—ly + Det™ ¥ =9

(1) 2x =sin y (v) 4(x —y%) sin y + n2=0.

SUMMARY
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. An equation involving independent and dependent variables and at least one derivative/

differential of these variables called a differential equation.

The order of a differential equation is the order of the derivative of the highest order,
occurring in the differential equation.

The degree of a differential equation is defined if it can be written as a polynomial equation
in the derivatives and for such a differential equation its degree is given by the highest
power of the highest order derivative appearing in it, provided the derivatives are made
free from radicals and fractions.

A differential equation is said to be linear, if the dependent variable and its derivatives
occur only in the first degree and are not multiplied together.

(1) A solution of a differential equation is a functional relation between the variables
involved which satisfies the given differential equation.

(1) A solution of a differential equation is called the general solution (or complete
solution), if it contains as many arbitrary constants as the order of the differential
equation.

(ir) A solution obtained by giving particular values to arbitrary constants in the general
solution of a differential equation is called a particular solution of the differential
equation, under consideration.



6.

10.

11.

12.

13.

0 If% — (), then dy = f(@) dx. - _[ 1.dy= j £l dx + C.
x
This represents the general solution of the given differential equation.
e Ay dy dy
i) 1t 2 = g(y), then -2 = f(). - J‘ _=j 1.f(x)+C.
dx £ e T
This represents the general solution of the given differential equation.
d 1
(i1) Ifﬂ = f(x) g(y), then Y fx) dx. .. J ——dy =J f(x)dx +C.
dx &) 8(y)

This represents the general solution of the given differential equation.

If % = flax + by + ¢), then z = ax + by + ¢ reduces the given differentiable equation to
x

‘variable separable’ form.

d
If d_z =f (%) is a homogeneous equation, then y = vx reduces the given differential
equation to ‘variable separable’ form.
d a;x + +c a b
If —y=¢and—1¢—l then put x=X+ handy =Y + k where h and k are
dx aoX + bzy + Co ay bz

constant such that a h + bk + ¢, =0, a,h + b,k + ¢, = 0. The substitution Y = VX
reduces the resultant equation to ‘variable separable’ form.

If oA + Py = Q is a linear differential equation, where P and Q are functions of x or

dx
constants, then yejpdx = J (erpdx) dx+C

is the general solution of the given differential equation.

d
A differential equation of the form d_i)c +Py=Qy", where n#0, 1 and P and Q are functions

of x or constants, is solved by putting z = y™*!. This substitution reduces the given
differential equation to a linear differential equation.

d
A differential equation of the form f”(y) d_y + f(y)P = Q, where P and Q are functions of x
x

or constants, is solved by putting z = f(y). This substitution reduces the given differential
equation to a linear differential equation.

If o + Px = Q is a linear differential equation, where P and Q are functions of y or
Y

constants, then x P _ J. (Q /P dy dy + C is the general solution of the given differential

equation.
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Ondi Di al
mations UNIT II

NOTES 2. EXACT DIFFERENTIAL
EQUATIONS

Introduction

Theorem

Equations Reducible to Exact Equations

INTRODUCTION

A differential equation obtained from its primitive directly by differentiation,
without any operation of multiplication, elimination or reduction ete. is said to be an
exact differential equation.

Thus a differential equation of the form M (x, y) dx + N (x, y) dy = 0 is an exact
differential equation if it can be obtained directly by differentiating the equation u
(x, ¥) = ¢, which is its primitive.

e., if du = Mdx + Ndy.

For example, the equation xdx + ydy = 0 is an exact differential equation, as it

can be obtained from its primitive x? + y% = ¢ directly by differentiation.

THEOREM

The necessary and sufficient condition for the differential equation Mdx + Ndy =
0 to be exact is
oM oN
dy ox-
The condition is necessary
The equation Mdx + Ndy = 0 will be exact, if du = Mdx + Ndy

ou ou
=—dx+—d
But du E» X 3 A%

d d
de+Ndy:a—:dx+@udy

Equating co-efficients of dx and dy, we get
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2 2
a_M: 0u and a_N: 0"u
dy  Oyox ox  odxdy
2 2
But 0“u _ 0“u
dydx  dxoy
M _oN
dy Ox

which is the necessary condition of exactness.

The condition is sufficient.

Let u= j Mdx
y constant
2
a_u =M and 0’u = B_M
ox dyox  dy

%u _ 0%u oM _ON
=—— and —=—
dyox  0xdy dy ox

N_Pu_o (i
0x dxdy Ox |\ dy

ou
Integrating both sides w.r.t. x treating y as constant, we have N = — + f(y)

But

dy

Mdx + Ndy = P ax+1% 4 r(p)ba M= N=a—”+f(y)
/x y—a x + $+fy y . F 3

- [3—;‘ e + %dy] +fly) dy = du+ ) dy = d[u+ 1 fy) dy]

which shows that Mdx + Ndy is an exact differential and hence Mdx + Ndy = 0 is an
exact differential equation.

Note. Since Mdx + Ndy = d[u + | f(y) dy]

Mdx+ Ndy=0 = du+[f(y)dy]=0

Integrating, u+[fy)dy=c

But u= j Mdx and f(y) = terms of N not containing x

y constant

Hence the solution of Mdx + Ndy =0 is
j Mdx + j (terms of N not containing x) dy = c.

y constant

SOLVED EXAMPLES

Example 1. Solve (5x? + 3x%y? — 2xy®) dx + (2x°y — 3x%y2— 5y%) dy = 0.

Sol. Here M = bx* + 3x%y2 — 2xy® and N = 2x%y — 3x2y? — Hy*
oM 9 9 ON
% %y~ 6ay” = —

Exact Differential
Equations

NOTES
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Ordinary Differential Thus the given equation is exact and its solution is

Equations o
j Mdx + j (terms of N not containing x) dy = ¢
y constant
NOTES
i.e., j (5x* + 3x?y? — 2xy%) dx + j —by*dy=c
y constant
or x° + x%y? —xy? — 9P =c.

Example 2. Solve [cos x tan y + cos (x +y)] dx + [sin x sec®y +cos (x +y)] dy = 0.

Sol. Here, M =cos x tan y + cos (x + y)
and N =sin x sec? y + cos (x + y)
oM oN

— =cosxsec?y—sin (x +y) = —
dy ox

Thus the given equation is exact and its solution is

J Mdx + J (terms of N not containing x) dy = ¢

y constant

e, j [cosxtan y + cos (x +y)] dx =0
y constant

or sin x tan y + sin (x +y) = c.

+siny+
+ycosx siny y:O‘

d
Example 3. Solve @y -
dx sinx+xcosy+x

Sol. The given equation can be written as
(ycosx+siny+y)de+(sinx+xcosy+x)dy=0
Here M=ycosx+siny+y and N=sinx+xcosy+x

aM—cosoc+cos +1=——
dy YT o

Thus the given equation is exact and its solution is

j Mdx + j (terms of N not containing x) dy = ¢

y constant
e, j (ycosx+siny+y)dx=c
y constant
or ysinx+ (siny+y) x=c.
EXERCISE A

Solve the following differential equations (1 to 22):
1. (I+4xy+2y)dx+ (1 +4xy+2x3)dy=0 2. (3x2 + 6xy?)dx+ Bx>y + 4y dy =0
3. y(2—=3x)dy+x(x®-3y?) dx=0,y0)=1 4. 2x>—xy2—2y+3) dx— (x%y +2x)dy =0

2 2
5, L mrhyre 6. | —2L—-Llav+| 1o lay=o0
dx hx +by+f (y-x) x Yy (x-y)
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11.

12.

13.

14.

16.

18.
19.

20.

21.

22.

23.

11.
13.

16.

19.
21.

23.

dy — ydx *(xdy — yd
vy +ydx + 2 =Y _ g . xdx + ydy = LD ~ydx)
Xty x“+y
dx = yz 5 dx + xz > dy 10. 2x(1+\1x2—y)dx=\lx2—y dy
1-x"y 1-x"y
(ycosx+1)dx+sinxdy=0
@ [y(l+ 1) + cosy}dx +(x +logx —xsiny)dy =0
x
@) [y(l + i)cosy}dx + (x + logx)(cosy —ysiny)dy =0
(2y +y —tan y)dx + (x* — x tan® y + sec® y)dy = 0
A +e")dx + (1 - %) edy =0 15. e¥dx + (xe? + 2y) dy =0
ye¥ dx + (xe™ + 2y) dy =0 17. (yze"yz + 4x3)dx + (2xye"y2 -3y*)dy =0

(sec x tan x tan y — e%)dx + sec x sec®y dy =0

(sin x cos y + e2) dx+ (cos xsin y + tan y) dy =0
(2xy cosx” — 2xy + 1 dx + (sinx® - x%)dy = 0
e“(cosy dx —siny dy) = 0,y(0) = 0

sin x
y—4

[cosx log(2y — 8) + 1 }dx +

1 dy=0, y»=2
x 2

Find the value of A for which the differential equation (xy® + Axy)dx + (x + y)x’dy = 0,

is exact. Hence solve it.

Answers
x+y) 1 +2xy)=c 2. %+ 3x2y2+ yt=c 3. xt—6x2yi+yt=1
xt—x%y2 —4xy+6x=c 5. ax® + 2hxy + by*+ 2gx + 2fy+¢=0
2 x
A +10gZ =c 7. xy —tan_l[j =c
y-x x y
2 +y? +2a%tan | Z|=c o log L4xy gy —¢ 10. 3x% + 22 - 9% =¢
y 1-xy
ysinx+x=c 12. ) y(x+logx) + xcosy=c (i) ycosy (x+logx)=c
X2y+xy—xtany+tany=c 14.x+ye=c¢ 15. xe? +y2=¢
ew+y2=c 17. ¢ 4 x* -y =c 18. sec xtan y—e*=c¢
1 o .
—cos xcosy+ ke +logsecy =¢ 20. ysin x> —x%2y +x=¢
e*cosy =1 22. sin x log 2y —8) +logx=0

A=3; %x2y2+x3y=c‘
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Ordinary Differential
Equations EQUATIONS REDUCIBLE TO EXACT EQUATIONS

Differential equations which are not exact can sometimes be made exact after

NOTES multiplying by a suitable factor (a function of x and/or y) called the integrating factor.

For example, consider the equation y dx —x dy =0 (D)
Here, M=y and N=-x

oM % a_N, therefore the equation is not exact.

dy ox

) L . 1 .
(t) Multiplying the equation by —, it becomes
Yy

dx — xd
e zx e 0 or d(ﬁj =0 which is exact.
Yy Yy

(11) Multiplying the equation by iz, it becomes
x

ydx——zxdy =0 or d(lJ =0 which is exact.
X X
(tir) Multiplying the equation by —, it becomes
xy
dx d S
DDy or d(log x —log y) =0 which is exact.
x Yy
1 1 1 . .
—»—5 and — are integrating factors of (1).
y X xy

If a differential equation has one integrating factor, it has an infinite number of
integrating factors.
I.F. Found by Inspection

In a number of problems, a little analysis helps to find the integrating factor.
The following differentials are useful in selecting a suitable integrating factor.

(@) ydx + xdy = d(xy) 1) 3cdyx——2y0lx = d(%)
() ydx——zxdy =d i) @tv) M = d(tan_1 l)
y \Y x“+y x
xy L x xy
(vif) 2 _ g L0 2 4 y2)] (i) TR I _ g Lypg ¥¥Y )
Xty L2 x% - y? 2 x—y
SOLVED EXAMPLES

Example 4. Solve ydx — xdy + 3x2y® e dx=0.

Sol. Since 3x2e* = d(exg), the term 3x2y2e’53 dx should not involve y2.

. 1
This suggests that —- may be an LF.
Yy
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or
Integrating, we get Xier = ¢, which is the required solution.
Yy
Example 5. Solve xdy — ydx = x+/x? — y? dx.
5 xdy — ydx
2
Sol. The given equation is xdy — ydx = x? ,|1— (l) dx or x—z =dx
x (1)
x
1Y . .
or d(sm ;) = dx, which is exact.
Integrating, we get sin~! Y—x+c or y=xsin (x + ¢), which is the required
x
solution.
2 p—
Example 6. Solve: xdx +ydy = M‘
x“+y
Sol. The given equation is xdx + ydy — a?d (tan_1 %) =0
2 2
Integrating, we get  —— + Y _a 1Y ¢
2 2 x
or x2 + y? — 2a% tan™! Y- C, where C = 2c.
x

Solve the following differential equations:
1.
3.

5.

C 1
Multiplying throughout by —, we have
y

ydx — xdy

y2

+ 3x2e% dx =0

X 3
d (—J +d (e* ) =0, which is exact.
Yy

EXERCISE B

xdy — ydx = (x% + y2) dx
y(@2xy + e¥) dx = e* dy
xdy — ydx = xy? dx
2 dy dy
ay - 1+9
(x +y) (xdx+yj xy( +dxj
(y + y%cos x) dx — (x—y>) dy =0.

tan Y =x +¢
x
X
2+S —¢
Yy
2
x x
Z+—=c¢
y 2
log (xy) = — +c
x y2
Z+sinx +<2-=c.
2

2. xdy — ydx = (22 + y2) (dx + dy)
4. (ylogy—2xy) dx+ (x+y)dy=0
6. xdy = (x2y? — y) dx

8. xdy — ydx = (4x® + yz)dy

Answers

2. tan'll=x+y+c
X

4. xlogy-x*+y=c

1
6. —— =x+c
xy

1 -1y
=t < |=y+
8. an ( j y+c

Exact Differential
Equations

NOTES
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Ordinary Differential Hints

Equations
R L N d[tan‘lyj:dx 3. 1F.= L ang 22E_Cd_g ¢
x“+y x y y y
dy + ydx d(xy)
NOTES 4. I.F.:1 and fdy+logydx=d(oclogy) 6. %:dx xyz =dx
xdy +ydx  dx +dy dlxy) d(x+y)
7. = S = ———= 5
xy (x+y) xy  (x+y)
xdy — ydx (xdy — ydx i d >
%:d N Lz:dy N X s=dy.
4x%+y 4+(yh) (yj
4+ =
x

|.F. for a Homogeneous Equation

. . 1 .
If Mdx + Ndy = 0 is a homogeneous equation in x and y, then ot Ny isan LF.
y
provided Mx + Ny # 0.

Note. If Mx + Ny consists of only one term, use the above method of I.F. otherwise,
proceed by putting y = vx.

Example 7. Solve: (x%y — 2xy2) dx — (x° — 3x%y) dy = 0.
Sol. The given equation is homogeneous in x and y with

M =x%y — 2xy? and N =—x%+ 3x2y

Now, Mx + Ny = 2%y — 2x%y2 — a3y + 3x2y2 = x2y2 2 0
1T = 1 1
T Mx+ Ny x%y?

Multiplying throughout by ——-, the given equation becomes

zyz '
[l_gJ dx_(i——J dy = 0, which is exact.
y x

The solution is

/ﬁ\

———de+J. —dy=c

y constant

or —2logx+3logy=c.

x
y

EXERCISE C
Solve the following differential equations:
1. (xy—2y3)dx—(*-3xy)dy=0 2. x2y dx— (x*+ %) dy=0
3. Bxy?—yH)drx—2x2y—xy>) dy=0 4. (x% — 3xy + 2y?) dx + x(3x — 2y)dy = 0.
Answers
3
1. £—210gx+310gy=c 2. logy—x—g=c
y 3y
y 2] 3y — v2 = ex?
3. 3logx —2logy+==c 4. x"logx +3xy —y” =cx
x
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I.LF. for an Equation of the Form £ (xy) ydx + f(xy) xdy = 0.

If Mdx + Ndy = 0 is of the form f,(xy) ydx + f,(xy) xdy = 0, then ﬁ is an

L.F. provided Mx — Ny = 0.

Example 8. Solve: y (xy + 2x%y%) dx + x(xy — x2y%) dy = 0.
Sol. The given equation is of the form f, (xy) y dx + f,(xy) x dy = 0.

Here, M = xy? + 20%y% and N = x2y —x%y?
Now, Mx — Ny = x2y? + 2x%y% — x2y2 + x%y% = 3a3y3 2 0
1 1
LF. =

Mx—Ny = 3x3y3

S 1 . .
Multiplying throughout by PR the given equation becomes
Xy

12 +3 dx + 12—i dy=0
3x%y 3x 3xy” 3y

which is exact. The solution is j ( 1 + EJ dx + j - 3i dy=c
Yy

2
y constant 3x y 3x
or —i+zlo x—llogyzc
3xy 3 273
1
or -— +2logx—logy=_C, where C = 3ec.
xy

EXERCISE D

Solve the following differential equations:
1. (1 +xy) ydx+ (1—xy)xdy=0. 2. (y2 + xy + 1) ydx + (x%y*> — xy + Dady = 0.
3. yQ2xy+ Ddx+ x(1 + 2xy — x3y3)dy = 0. 4. (xy? + 2x2y?)dx + (x%y — x3y?) dy = 0.
5. (y—xyd)dx— (x+ x%y) dy=0.
6. (xy sin xy + cos xy) ydx + (xy sin xy — cos xy) xdy = 0.

Answers
1. —i+log Tl=¢ 2. xy +log| = _i:c
xy y y xy
1 1 1
3. ﬂ.1.?-1-]0gy:c 4. —— +2logx —logy =c
xTy" 3y xy
5. log[xj— xy =c 6. vy cos xy = cx.
y

For the equation Mdx + Ndy =0
oM _ON

019

N = f(x), a function of x only, then el /@4 is an LF.

Exact Differential
Equations

NOTES
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Ordinary Differential ON oM
Equations

iy 1

i = g(y), a function of y only, then ¢/294 is an LF.
NOTES

SOLVED EXAMPLES

1
Example 9. Solve: (xy? — e* ) dx — x% dy = 0.

1

Sol. Here, M = xy? — e® and N=— x2y
oM _oN
dy ox Zay-(-2xy) _ 4. which is a function of x only.
N —x2y x

4
ILF. = e" T =g 4logx :i

4
X

2 1
Multiplying throughout by —, we have [y_s - % e*’ ] dx — % dy=0
x° X

9 1
1 -
which 1s exact. The solution is j [y_ - ]

- dx=c
y constant
9 1
1 3 1
or _y_2+_J‘__4€x3 dx=c or ——+—J. dt=c, Wheret——
2x° 3 x 252 x®
2 2 el
3
or _y_2+let:c or —Lz+2ex3=(), where C = 6¢.
2x 3 x

Example 10. Solve: (xy° +y)dx + 2(x*y* +x+y*) dy =0.

Sol. Here, M=xy’+y and N =2x%?2+ 2x + 2y*
N _ oM
ox oy 4xy +2 3xy? -1 xy? +1 _1
M

xy® +y Cyayt+D y
which is a function of y only.

[
LF.=e? =¢logr=
Multlplymg throughout by y, we have (ocy4 +y)de+2 @2y +xy+y°)dy=0
which is exact. The solution is j (xy* + y9) dx + J 2y dy =¢

y constant

6
or Xy 2,
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EXERCISE E

Solve the following differential equations:

1. (2+y2+x) dx+xydy=0 2. (k2 + y2 +1) dx — 2xydy = 0.
3. (+y®+ 2x)dx+ 2ydy =0. 4. (y* + 2y)dx + (xy® + 2y* — 4x) dy = 0.
y3 x? 1 2
5. y+§+? dx +Z(x +xy“)dy = 0. 6. (x sec2 y — x2 cos y)dy = (tan y — 3x¥)dx.
7. (xye™ + y2) dx — x2e*y dy = 0. 8. (Bxy — 2ay?)dx + (x% — 2axy)dy = 0.
9. (x'e*—2mxy?)dx + 2mxydy = 0. 10. y(2x2y + e%)dx = (e* + y*)dy.
11.  ydx—xdy +log x dx=0. 12. 2xlog x— xy) dy + 2ydx = 0.
13.  (3x2Zy*+ 2xy)dx + (2x%y3 — x?) dy = 0. 14. ylog y dx + (x —log y) dy = 0.
15.  (xy® + y)dx+ 2 (x2y2 + x + yHdy = 0.
Answers
! 2 2
1. 3xt+6a32+48=c 2. x-2 -~ =¢ 3. e (x®+y%) =c
X x
2 2
4. (y"'yzjx"'y =c 5. 3%y +xty3 +a8=¢ 6.w+x3—siny=c
x
p)
7. e+logx=c 8. Xy(x—ay)=c 9 ex+m(%j =c
%3 ety 1 4
—_—t— —— = = _— =
10. 3 5 B ¢ 11. 1 +y+logx=cx 12. 2y log x 2y c
2 2 4 6
1
13. x3y2+x7=c 14. xlogy—g(logy)zﬂ 15. 22 +xy2+y§=c

I.F. for an equation of the form
x%yb (my dx + nx dy) + x°y? (py dx + gx dy) =0

where a, b, ¢, d, m, n, p, q are all constant is x"y*, where h, k are so chosen that after
multiplication by xy”* the equation becomes exact.

Example 11. Solve (2x%y2 +y) dx + (3x — x%y) dy = 0.

Sol. The equation can be written as 2(x%y? dx — x3ydy) + (y dx + 3xdy) =0
or x2y (2ydx — xdy) + x%° (y dx + 3xdy) =0
which is of the form mentioned above. Therefore, it has an LF. of the form xy*.

Multiplying the given equation by x"y*, we have

(2u/+2y42 4 xh W+ e + (St Ly — xitSyktly gy = ()

For this equation to be exact, we must have 8_M = a—N
dy Ox
i.e., 2k + 2) x2yRL + (k + 1) xtyE = 3(h + 1) alyk — (h + 3) alT2yktL
which holds when 2k +2)=—((h+3) and k+1=3Mh+1)
t.e., when h+2k+7=0 and 3h—k+2=0
Solving these equation, we have h = — %, k=— %

Exact Differential
Equations

NOTES
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Ordinary Differential

§ _i1 18
Equations IF.=x Ty 7
_11 18
Multiplying the given equation by x 7y 7, we have
NOTES plymg g qa y y
3 _5 1 12 4 1 10 12
207y T4x Ty Tldet|3x Ty T-xTy Tidy=0
D .. 3 _5 N
which is exact. The solution is j 2Ty T4x Ty 7 dx=c
y constant
BRI S g
or gy oty T=c or 4x7y T-5x Ty 7 =C, WhereC—7c.
Note. The values of h and k can also be determined from the relations
a+h+1 b+k+1 c+h+1 d+k+1
= and = .
m n p q
Comparing the given equation
x2yQy dx — x dy) + x°y°(y dx + 3x dy) =0
with x4t (my dx + nx dy) + xy? (py dx + qx dy) =0
we have a=2,b=1,¢=0,d=0
m=2,n=-1,p=1,qg=3
a+h+1_ b+k+1 - 2+h+1_ 1+k+1
m - n 2 -1
or 3+h=—4-2k or h+2k+7=0 ..
Also, c+h+1:d+k+1 - 0+h+1=0+k+1
p q 1 3
or 3h—k+2=0 o)
Solving (1) and (2), we have h=- %, k=-— g
EXERCISE E
Solve the following differential equations:
1. (3 + yHdx + 2x° + 4xyP)dy =0 2. (y2 + 2x%y)dx + (2x° — xy)dy =0
3. (2x%y —3yHdx+ (3x* + 2xy3)dy =0 4. (y3 = 2x2y)dx + Qxy* —x%)dy =0
5. (2ydx+ 3xdy) + 2xy(Bydx + 4xdy) =0 6. x(3ydx + 2xdy) + 8y* (ydx + 3xdy) =
7. (2y% —4x%y) dx + (4xy + 3x%) dy = 0.
Answers
3/2
1. Tall2yll4 11472y = ¢ (LF. = 15/2y10) 2, 6\/@ _(Zj =c¢ (LF.=xb2y12)
x
536118 24113 _ 19410113 416113 = ¢ ([ |, = x-49/13)-28/13)
4. x*yt—yixt=c (IF.=xy) 5. x2y3 (1 + 2xy) =c¢ IF. =xy?
_2 4 20 5
6. x3y2 + 4x2y6 =c (I.F. — xy) 7. 5x lly 11 + xlly 1 _ c (I.F. — xﬁlsllly—%/ll)
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3. LINEAR DIFFERENTIAL
EQUATIONS OF THE FIRST ORDER

STRUCTURE

Definition

To Solve the Equation + Py =Q, where P and Q are Functions of x only
(Leibnitz's Equation)

Bernoulli’s Equation (Equations Reducible to the Linear Form)
Differential equations of the first order and higher degree

Equations Solvable For p

Equations Solvable For y

Equations Solvable For x

Clairaut’s Equation

DEFINITION

A differential equation is said to be linear if the dependent variable and its
derivative occur only in the first degree and are not multiplied together.

Thus, the standard form of a linear differential equation of the first order is

d ) .
A Py=Q, where P and Q are functions of x or constants (i.e., independent of y).

dx

TO SOLVE THE EQUATION % + Py = Q, WHERE P AND
Ix
Q ARE FUNCTIONS OF x ONLY (Leibnitz’s Equation)

The given equation is Z—y +Py=Q
x

JPdx

Multiplying throughout by e , we get
%.ejpdvaPy.eJde:Q.eJde (1)

linear Differential
Equations of the
First Order

NOTES
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Ordinary Differential d

Equations NOW, i [yeJde] = ﬂ . eJde +ty. — [eJde]
X dx dx
d
Zﬂ.ejpdvay.eJde.—[dex]
NOTES dx dx
Aol e @
d d
:d_fc'eJde+y'eJde'P:d_z'eJde+Py'eJde
d IPdxy — | Pdx
From (1), — |y.e 1=Q.e
dx

Integrating both sides w.r.t. x, we have

y.eJdeZIQ.eJPd" dx+c

which is the required solution of the given linear differential equation.

Note 1. The factor eJ Pdr on multiplying by which the LLHS of the differential equation
becomes the differential co-efficient of some function of x and y, is called an integrating factor of
the differential equation and is shortly written as [.F.

Note 2. The solution of the linear equation Zx—y + Py = Q, where P and Q are

functions of x only, is
y@.F.) =] QIF.)dx+c

Note 3. Sometimes a differential equation becomes linear if we take y as the independent
variable and x as dependent variable. In that case, the equation can be put in the form

— + Px=Q, where P and Q are functions of y (and not of x) or constants.

dy

L.F. (in this case) = e/Pdy , and the solution is
x@.F)=/Q. A.F.) dy+ec.
Note 4. While evaluating the L.F., it is very useful to remember that

elogf(x) — f(x)
Thus, eosT — x2
Note 5. The co-efficient of Zx—y , if not unity, must be made unity by dividing

throughout by it.

SOLVED EXAMPLES

Example 1. Solve the following :

@) (1+x?) dy + 2xy = 4x2 ) dy _ y tan x — 2 sin x.
dx dx

Sol. (1) Given equation is (1 + x2%) % + 2xy = 4a?
X

Dividing throughout by 1 + x2, (to make the co-efficient of Z—y unity.)
x
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or

or

or

or

or

d 2 4x? :
_y+ xz_y: X 5 (l)
dx  1+x 1+x
It is of the form ﬂ+Py=Q
dx
2 452
Here, p=—= =

= ,Q:
1+ x? 1+x?

1P dx J12x2dx log (1+ %)
ILF.=e =e "TY =BV =1 442

Hence the solution 1s

y (LF)= j Q. (LF) dx+c

2

y(1+ ) = |

1+ 2 .(1+xd)de+ec

y(1+x%) = j Ax?dx + ¢
3

y(1+x2)=%+c‘

e .. d .
(1) Given equation is d—z —(tanx) . y=-2¢inx

d
It is of the form A Py=Q
dx

Here P=—tanx, Q=—2sinx
1.F. = eJde — e_Jtanx dx — e—(—log cos x)
= elogcos ¥ = ¢cog x
Hence the solution is

y (LF) = j Q. @LF) dx +c

ycostI —2sinxcosxdx+c

—cos 2x
Z—I sin2xdx+c=—T +c
ycost% cos 2x + c.
Example 2. Solve the following:
: d; : . d
(L)secx—y=y+31,nx (u)xlogx—y+y=2logx
dx dx
N . dy .
Sol. (1) Given equation is sec x . de —y=sinx
e - dy .
Dividing throughout by sec x, to make the co-efficient of Te unity,
dy .
—— —(COS X) . y = sIn X COS X
dx
d,
It is of the form d_ilc +Py=Q

linear Differential
Equations of the
First Order

NOTES
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Ordinary Differential Here, =—cosXx, Q=sinxcosx

Equations (Pa | d )
IF.=¢ v — pl-cosxdr — oosinx

Hence the solution 1s

NOTES y.(@F)= j Q.(IF)dx+c

or y. e sny= Jsin xcosx.e S"¥dyx+c= J tet dt + ¢, where t = sin x
-t -t
=t. e—l— 1.5 di+c=—tet—et+c
=—e¢l(l+ 1) +ec=—e ¥ (sinx+ 1) +¢
or y=—(sinx+ 1) + ¢ e ™,
A .. d
(1) Given equation is x log x d—i +y=2log x
Dividing throughout by x log x to make the co-efficient of d_y unity,
X
dx xlogx x
It is of the form dy +Py=Q
dx
2
Here, P= 1 , Q=—
x log x x
[ 1 [ Ux
- d
. I‘F‘:eJdezeJxl"g’cd Jlogx xzel"gl"gx:logx
Hence the solution is
y.(LF)= JQ. AF)dx+c
2
or ylogx=j;10gxdx+c
1
or ylogx=2j;.logxdx+c
_, Gogw? [JIE': e
=2y e ot
n+1
or ylog x = (log x)? + c.
d,
Example 3. Solve: x(x 1) d—z —(x-2y=x2x—1).
Sol. Given equation is
2e—1) D _(x—2y=xt@x 1)
dx
or dy  x-2  2*@x-1
dx x(x-1) x—1
. dy
It is of the form In +Py=Q
X
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linear Differential

2
Here P=-— x =2 Q= x”(2x - 1) Equations of the
’ x(x-1 " x—1 First Order
[ x-2 (z2__ 1 »
LF;:Jde:e_Jx“_Dw::e J& x‘Jd NOTES

= ¢ [2logx—log (x - D] = e llog x% — log (x — 1)

2 V1
2 x -1
—log X log[—) 2 _
I x-1) _[ X _x-1

= e = e =
x-1

The solution is

x-1 22x-1 x-
y. 2 :j

1
T2 dx+c=j(2x—1)dx+c=x2—x+c
x— x

or yx—1)=x%2x?—x+ o).

d
Example 4. Solve: x (1—x?) d_z +(2x% - Dy =7

d . .
Sol. Dividing by x(1 —x?) to make the co-efficient of d—z unity, the given equation
becomes
dy 2x*-1 x?
— 4+ D) y = 2
dx  x(1-x%) 1-x
d
It is of the form A Py=Q
dx
2% -1 x2
Here P= , Q=
x(1-x2) Q 1-x?
2x% -1 1 1 1 . :
Now a [Partial fractions]

T xl-0d+x)  x 20-% 20+x)

1 1
j deZ—logx—E log (l—x)—E log (1 + x)
= _log [x (1 _x)1/2 (1+ x)1/2]

=—log [x y1-x%]=log (x y1-x2)!

IF = eJde _ elog(xwll—xz)*1 _ 1
x41-x2
The solution is

2
1
j X 5 - dx +c¢
1-x x\/l—x2

- * __ 1 282
J(l_xz)s/z de+c= 2_[ (1—-x*7% (—2x)dx+c

1
" x\/l—x2
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Ordinary Differential

Equations — _% . (1 le) vz fe
2
NOTES = \/1y 5 :x/ll 5 +c = y=x+cx,ll—x2
x4 1—x -x
which is the required solution.
_2\/;
e y |dx
Example 5. Solve: ——=|—=
( NEEE J dy
Sol. The given equation is
2y x|
Jx o Nx ) dy
. dy Py oy 1
de  Wx o Ax x o x Jx
d
It is of the form 2 Py=Q
dx
H p-— e
ere = Tx Q= 7
Pl
LF. = e" ﬁdx = ej s —_ o2x
Hence the solution is
_2\/;
y.ez‘/;:j eT.ez‘/; dx +c¢
x
1
or y.eZ\/E:J' de+c
X
or yez‘g =2Jx +¢ or y= e 2 2x +0).
dx
Equations of the Form d_y + Px = Q where P and Q are functions of y
only.
Example 6. Solve the following:
. -1,.d .. d
Q) (1 +y9) + =™ )28 =0 (i) (25~ 10y%) 5= +y =0
Sol. (i) The given equation is
(1+y5)+ (x—etanily) il =0
dx
or (1+y2)@+x—et3nfly=0
dy
o @ N 1 . tan’ly
dy 1+y° 1+y°
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It is of the form — +Px=Q

2
LF. =e Y = etan vy
.. The solution 1s

etan’1 y

- -1
x. e y:j o2 e ydy+c=_[e‘.e‘dt+c where t =tan'y
+y

=Ie2‘dt+c=%e2‘+c

-1
or x.e Z%eZtan Y+ec.

(i1) The given equation is (2x — 10y?) % +y=0
X

dx dx 2
or y.— +2c—10y=0 or —+—.x=10y?
dy dy vy
. dx
It is of the form — +Px=Q
dy
2
= d
LF. = eJde = ejy ’ = e2logy = elogy2 =y2
The solution is xy2=J 10y? . y2dy + ¢ = IOJ yidy +c
1 5
or xy2=0Ty+c=2y5+c‘
EXERCISE A
Solve the following differential equations:
dy y_ o dy
. —+=x . —+ysecx=tanx
! dx «x 2 dx Y
dy dy
. —+yt = . x%) = +2xy = ;
3 d y tan x =secx 4 (1+x)dx+2xy cos X
dy x+y+1 dy ) .
5. £_7x+1 6.(x+1)a—ny—e(x+1)
dy dy
2, 2 - oy & — tan-1
7. cos xdx+y tan x 8.(1+x)dx +y=tantx
dy 2x 1 ‘
9. £+x2+l.y_(x2+l)2 given that y =0 when x =1
dy . . b
10. —— + 2y tan x =sin x given that y =0 when x = —
dx 3
11. x%+2y=leogx 12. Zx—y+ycosx=sin2x
13 lzx(x2—2y) 14 sinxdl + y cos x =2 sin? x cos x

linear Differential

Equations of the
First Order

NOTES
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Ordinary Differential dy dy
j —x2) — 4+ xy= —1) = —y=a2(x—1)2
Equations 15. (1 —-x?) e T Ww=ax 16. x(x—1) dx Y=Y (x=1)
dy
17. ydx—xdy+logxdx=0 18. a+2ycotx=3xzcose02x
NOTES 19. sin 2x dy =y+tan x 20. (x + 2y?) dy =
. X =Y ; . (0 YD e =Y
21. (1+y?)dx=@an'y—x) dy 22. ¢¥ dx + (1 +xe¥) dy =0
di v / 2
23. dy+2x—6(z 24. 2y + 4y =x" —x
dy
25. ¥y —2y=cos 3x 26.a+ycotx=2x+xzcotx
1+xlogx
27. y’+y=f 28. xy' —y=(x—1) e
Answers
1
1. xyzzx4+c 2. y(sec x+tan x) =secx+tan x—x+ ¢
3. y=sinx+ccosx 4. y1+x*)=sinx+c
y
. == =log (x+ 1)+ Ly = (et (er+
5 i1 log (x+1)+¢ 6.y=(x+ 1" (e +c)
7. y=tanx—1+ cetan> 8. y=tanlx—1+ cetanv
9. y2+1)=tanlx— g 10. y = cos x — 2 cos? x
xt xt
11. %y=""logx -+ 12. y =2(sin x — 1) + cesinx
y=plogx-Totce y =2 )
1 .2 . 2 .
18, y== (x2=1)+ ¢ce™ 14.ys1nx=§sm3x+c
3
15. y=a+cyl-«? 16.y=(1—1j(’;+cj
x
17. y+1+logx=cx 18. ysinZx=x>+¢
19. y=tanx+ cqtanx 20. x=y>+cy
21. x=tanly—1+ cetan ¥ 22. xe¥ +y=c
1
23. x=2¢"+ce ¥ 24. y= 1 (x—12+ ce?
1 . . .
25. y= IR} (3 sin 3x — 2 cos 3x) + ce** 26. ysin x=x>sinx+ ¢
27. y=logx+ce™ 28. y=¢e*+cx
BERNOULLI’'S EQUATION (EQUATIONS REDUCIBLE TO
THE LINEAR FORM)
. dy .
To solve the equation I + Py =Qy", where P and Q are functions of x
X
only
) .. dy )
The given equation is Ix + Py =Qy" ()
X
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Dividing both sides of () by y”, to make the RHS a function of x only.

d
y—n _y + Pyl—n - Q
dx
Put y' =z, then
R N SO N
)Y Ak T dx dx 1-n  dx
(11) becomes 1 ) E +Pz=Q
1-n dx
or £+(1—11/).Pz=(1—n) Q.
dx
which is a linear equation in z and can be solved.
In the solution, putting z = ', we get the required solution.
SOLVED EXAMPLES
d 2
Example 7. Solve: 2 Y, y_2
dx x g
d y?
Sol. The given equation is 2, &Y 5 -
dx x «x
Dividing throughout by y?
dy 1 1
o2 2 oy l= =
Y dx «x Y x?
dy dz
Put y!=z, then —y2 X ==
Y Y dx dx
.. (1) becomes
9 dz 1 1 dz 1 1
— _ = — T —_— —_— e
dx x x? 0 dx = 2x ° 2x?
which is linear in z.
1 1
P - 2_ ) Q - 2x2
1 1
LF. = e" 22T sy _ Jx

.. The solution 1s z . «/; =

1
J —W«/;dx+c

1 Vo1
or = x=——j x 32 dx+ e or —=—F+c
Y 2 y  x
or x=y(l+c «/;)‘
Example 8. Solve the following :
~dy 1 e¥ . ady X
) gy * = i) o+ 7z Y=y,

()

linear Differential
Equations of the

G First Order

NOTES
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Ordinary Differential

} ) .. d y
Equations Sol. (i) The given equation is @ 1 =&
dx x x2
Dividing throughout by ¢”
NOTES LAy o dy 11 :
e dx e 2 ..
d dz
Put e? =z, then —eyd—zza
.. (1) becomes
dx x x? dx «x x?
1 1
which is linear in z. P=——,Q=-—7%
x x
1 1
Lp ool N o e 1
x
1
The solution is 2.—=J. —iz.—dx+c
X X X
1 1 1
or ey.;:_J. —de-i-c or e*y.l:_22+c
x x x
or 2x = ¥ + 2cxe.
d,
(1) The given equation is d_z + 1—xx2 y=x \/5
Dividing throughout by \/_ ,
d,
ML S S -
1 _ dy dz
Puty'? =z th —y P Z===
uty > then 2 Y dx dx
.. (1) becomes
2 E + * zZ2=Xx or E L z —E
Tdx 1-x% ’ dx 2(1-x%)" 2
x x
hich is linear in z. =—7F,Q==
wn 1S 11 1 2(1_x2) 9
| ——Fda —%j 2%
LF.=¢ 2179 —, 1-x | Note
1
_ e—zlog(l_xz) _ elog(l—xz)’l/“ . x2)*1/4
The solution is 2. (1 —x?) = j g (1—-xdHMdy+ec
1
or Jy (1—x2)*1’4=—ZJ‘ — 2x(1 —x2) M dx + ¢
or ﬁ‘(l—x2)*1’4=—z.%+c
4
1
or Jy =- 3 (1—x2) + c(1 — x2)14,

90 Self-Instructional Material



Example 9. Solve: (x%y® +xy) dy = dx. linear Differential

) L Equations of the
Sol. The given equation is (x?y® + xy)dy = dx First Order
d
or & x2y3 + xy
dy NOTES
d
or ax xy = x?y? Form = + Py = Qx"
dy dy
Dividing throughout by x?
d. )
x*2—x—x*1y=y3 0
dy
d,
Put x! =z, then —x?2 dx _ @z
dy dy
. (1) becomes
—— —zy=y" or %+y‘z——y3
d dy
which is linear in z. P=y, Q=—4°

[F = elvdy _ gv/2
. . 2 2
~. The solution is  z. ¢¥2¥" = j —y3. eV dy + ¢
2 2 1/2y?
or L 2y :_j y . .y.e’* dy+ec

Z—J 2te' dt+c, wheret=1y?

or xlQV2y =2t (t—1)+ ¢
2 2
or b V2t = 2,12 (L2 14
2
or xl=—y2+ 2+ ce” VT

Example 10. Solve the following:
. dy LAy
@) x+1)—+1=2e7 @) —— = e (e* - )
dx dx

d
Sol. (i) The given equation is (x + 1) d—z +1=2e”

907V
ﬂ+ 1 2e

or de x+1 x+1
2
or ey.ﬂ+ 1 LeY = ()
de x+1 x+1
Put e¥ = z, then ey.ﬂzE
dx dx
P , z, 1 2
rom (1), dx x+1'2_x+1
. ) 1 2
which is linear in z. P_x+1’Q_x+1
1
J.idx
IF. =e x+1 =elog(x+1)=x+l
2
The solution is zx+1)= j— .x+1Ddx+c
x+1
or . (x+1)=2x+c
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Ordinary Differential
Equations

NOTES

(1) The given equation is

dy dy
==V (e —e) or - =eX eY—¢"
dx ( ) dx
d d
or D vz gy or e h v =
dx dx
dy dz
Put ¥ = z, then e, —— =—
v dx dx
. dz | ox
.. (i) becomes —— tev.z=e*
dx
which is linear in z. P=e" Q=¢e*

. The solution is z. e = J e ¢ dx+ec
or ey.eexZJ.eJc e e dx+c
the‘ dt +c¢, wherei=¢"
=el(t—1)+c
or . e =e® (=1 +c or @=e"—1+ce @,
dy 1 2
Example 11. Solve: Te + xtanly - x5 +y?) =0.
Sol. The given equation is
d,
A Qxtanly—x)1+y)=0
dx
or 1 .ﬂ+2xtanf1y—x320
1+ y2 dx
or 1 .ﬂ+2xtanfly=x3
1+ y2 dx

1 dy dz

Put tan™! y = 2, then )
Y 1+y2 dx dx

. dz
From (@), e + 2xz = x°
X
which is linear in z. P=2x, Q=x°
LF. = ¢/ 26dx = ¢%
2
. The solution is 2 ¥ = j . e dy+c
-1 x2 —1 2 x2
or tanty. e =35 2x.x*e” dx+c
=1 | teldi+c, wheret=x?
=Lle(t-1+ec
2 2
or tanly. e =1e" (-1 +c
or tanly=2 (¥ 1)+ ce .

Example 12. Solve the following differential equations:

. . d
@) (xy? +xy) dx = dy () d—i + %log y= x% (log y)*
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Sol. (i) The given equation is (x*y? + xy) dx = dy

d
or d—y = x5y? + xy or Z—y —xy = x%y?
X X
- . d. .
Dividing both sides by y?, y2 d—y —xy =" @)
X
dy dz
Put y!=z, then -yt =
uby Y dx dx
} dz dz
. (i) becomes it X’ or In +xz=—x°
X
which is linear in z. P =x, Q=—x°
x2
IF = edex _ e?
x2 x2 x2
. The solution is z.e? ZJ. —x%. e? dx+c=—j x2.xe? dx+c

2
Z—J 2tet dt + ¢, Wheretzx?

Z—J 2leldt +c=—-2e¢' (- 1) + ¢

£ 2
yl e2 =_2e2 (?—1J+c

x2

or yl=—x2+2+ce 2 .

y . .. d
(it) The given equation is R AN logy = % (log y)?
dx «x x

Dividing both sides by ¥ (log y)?, we get

1 oly+ 1 1 1

10gy;=x—2 (l)

y(log y)? ~ dx

1 1
Put —— =(logy)*=z%, then—(logy)*.—ﬂzﬁ
log y y dx x
o L b
) dz 1 1 dz 1 1
From (1), by == or 2L a=
® dx x  xZ dx «x x2
R, ) 1 1
which is linear in z. P=-=-,Q=-—%
x x
1
IF - eJ _; = e_Ing = elng71 = xﬁl = —
x
1 1
.. The solution 1s 2.—=I——2.ldx+c
X X X
1 -2
or 2.—2—_[ dete=—2_+¢
x -2
1 1 1 N 1 1 .
or . —=—5+c or = — + cx.
10gy X 2x2 10gy 2x

linear Differential
Equations of the
First Order

NOTES
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Ordinary Differential Example 13. Show how to solve an equation of the form
Equations d
') d_ilc + Pf(y) =@ where P, Q are functions of x only.
NOTES Sol. (a) The given equation is
L, dy .
') 4, TP =Q 0
X
where P, Q are functions of x only.
d, d
Put f(y) = z, then [ (y) @& _ %
dx dx
d
. (i) becomes 2, Pz=Q
dx
which is linear in z and can be solved.
LF. = ¢!P% and the solution is
2ILF)=/Q.AF)dx+c
or fo). AF)=1Q.A.F)dx+c
Example 14. Solve the following differential equations:
d, d,
(i)(x+1)—y+1=ex*y (ii)—yzytanxfy2secx‘
dx dx
Sol. (i) The given equation is
dy e” dy e’ e” )
+1)—+1=— Y —= + =
(w+ 1) dx ! e or- e dc x+1 x+1 @
) dy dz
) = y — =
Putting ¢’ = z so that e . dx
. dz z e”
.. (i) becomes £+x+1_x+1
o . . 1 e”
which is linear in z with P_x+1’Q_x+1
1
—_dx
17 =elPd =eJ Tl o pleelerl g
x
The solutionis  z (x + 1) :j 1 x+1)de+tc or @(x+1)=e"+c.
(1) The given equation is
dy 5
— —ytan x = —y°sec x
dx
1
or —iz.ﬂ+—tanx=secx ..(D
y dx y
.1 1 d d
Putting — =z so that — — X%
y y® dx dx
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.. Equation (1) becomes
dx

which is linear in z with P =tan x,

LF =ePo=e

.. The solution 1s

Jtan x dx

dz
— +ztanx =sec x

Q =sec x

log sec x
=e® =secx

z‘sechJ‘ secx.secxdx+c

1 1 )
or —secx=tanx+c¢c or — =SInX+ccCosX.
y y
EXERCISE B
Solve the following differential equations:
dy . vy ,
1. a+;=y2 2.y +y=9>
dy y 2 %3
—~ — 343 — 4+ =
3. de XY 4'3dx x+1y yz
d d
5. L4 _ oy 6. x X 4 y=adyt
dx «x dx
dy 2402
7. d——2ytanx=y tan® x 8. (ylogx—1)ydx=xdy
X
d ) dy t
9. ﬁ+xs1n2y=x'?‘cos2y lo.ay—lafj=(1+x)exsecy
11. (x—y?)dx+2xydy=0 12. cos x dy = y(sin x— ) dx
d _
13. xy-— Eyzy‘%e < 14. (xy? —eVy dx—x%y dy=0
15. ¢ (Zy+1j=ex 16. (xy — 2x log x) dy =2y dx
X
LY _
17. dx + < =Y log x 18. y Qxy + &) dx = ey
19. xjx—y+y=y2x3(:osx 20. sinij—y:cosy(l—xcosy)
Answers
1
1. — +logx=c 2. y=
xy & Y 1+ce®
6 5 4
x 2x°  x
3. yP=at 414 4yt 1)t = T o
5 1
5 T.,=*x3+cx5 6. — =-3x%log x + ¢
y 2 y
1 2 tan® x 1
7. —sec’«x +c 8. — =logx+1+cx
y 3 y
3
9. tany= - @ -D+ce™ 10. sin y = (1 + ¥)(e* + ¢)
11. y?*=x(c—logx) 12.l=sinx+ccosx

y

linear Differential
Equations of the
First Order
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Ordinary Differential
Equations

NOTES

1

18, y2. e =2x+c 14. 3y = 2% + cx®
L 2
15. e ==e¥ 4¢ 16.ylogx=L+C
9 4
1 1
17. 52_5(10gx)2+cx 18. ¢ = y(c — a%)
1
19. ngxsinx—cosx+c 20. secy=x+ 1+ ce*

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND
HIGHER DEGREE

So far, we have discussed differential equations of the first order and first degree.
Now we shall study differential equations of the first order and degree higher than the

. . d
first. For convenience, we denote d_y by p.
X

A differential equation of the first order and n'* degree is of the form
pr+ P prt+Popr?+ L +P, =0 ..(1)
where P, P, ... , P, are functions of x and y.

Since it is a differential equation of the first order, its general solution will
contain only one arbitrary constant.

In the various cases which follow, the problem is reduced to that of solving one
or more equations of the first order and first degree.

EQUATIONS SOLVABLE FOR p

Resolving the left hand side of (1) into n linear factors, we have
o —-fieN p-fx. ], ... [p =[x, )]=0
which is equivalent to p —f,(x, y) =0, p —f,(x, ») =0, ... .0—f,x =0

Each of these equations is of the first order and first degree and can be solved
by the methods already discussed.

If the solutions of the above n component equations are
Fi(,y0=0F,(xyc¢=0,... JF, (@ y,0)=0
then the general solution of (1) is given by

F, @y 0 -Fyxy,0 ... F,(xy ¢)=0.

SOLVED EXAMPLES

2
Example 15. Solve: x? (ﬂ) +xy @ 6y* = 0.
dx dx
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or

and

or

Sol. The given equation is x?p? + xyp —6y* =0 where p = Z—y
x
Factorising (xp +3y) (xp —2y) =0
= xp +3y=0 or xp—2y=0
Now, xp+3y=0
d d, d.
= x—y+3y=O or _y+3_x:0
dx y X
Integrating, logy+3logx=logc or x’y=c
Also, xp—2y=0
d d d.
= x—y—ZyZO or _y_z_x:O
dx y X
Integrating, logy—2log x=1logc or % =c¢ or y=cx?

x
. The general solution of the given equation is (x*y —¢) (y —cx?) = 0.

Example 16. Solve xyp? + p(3x% — 2y2) — 6xy = 0.
Sol. Solving the given equation for p, we have

p=_ (8x% - 2y%) i\/(3x2 - 2y%)2 + 24x%y?

2xy
_@y"-3xMrGa’+2y") 2y 3¢
2xy x y
NOW, p:z_y = ﬂ:z_y or @-de:o
x dx «x y x
Integrating, log y —2log x =log ¢ or % =c¢ or y=cx?
x
3 d 3
Also, p=——x = @y __ X or ydy+ 3xdx=0
y dx y
2 2
Integrating, y? + 3% =C or y?+3x%=¢

. The general solution of the given equation is (y — cx?) (y* + 3x* —¢) = 0.

Example 17. Solve p? + 2py cot x =y~
Sol. The given equation can be written as (p + y cot x)% = y? (1 + cot? x)
P T ycotx==xycosecx
.. The component equations are
p =y (—cot x + cosec x)
p =y (—cot x — cosec x)

F 1 —— =y (—cotx+ ;
rom (1), dr y (= cot x + cosec x)
dy
— = (- cot x + cosec x) dx
Yy
X ctan x
Integrating, log y = —log sin x + log tan — + log ¢ = log —
2 sin x

linear Differential

Equations of the
First Order

NOTES

(1)
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Ordinary Differential x
Equations c tan 2

c c
or y= =

. X x x
2sin = cos = 2cos? > 1+cosx
2 2 2

NOTES or y(1+cosx)=c
From (2), ﬂ = y(— cot x — cosec x)
dx
d,
or o A (— cot x — cosec x) dx
Yy
Integrating, log y = —log sin x — log tan g + log ¢ = log
sin x tan ~
or y= ¢ = ¢ or y(l—cosx)=c
9gin2 X l-cosx

2
The general solution of the given equation is

[y(1 + cos x) —c] [y(1 —cos x) —c] = 0.

EXERCISE C
Solve the following equations:
1. p2—-7p+12=0 Z.xy(%)z—(x2+y2)%+xy=()
3. y2+(x—-y)p—-x=0 4.x2(%) + 3xy y+2y2—0

dy dx_x _y

5. 6. p?—2psinhx—-1=0
dx dy y «x
7. p+ty)=x(x+ty 8. 4y?p? + 2pxy (3x+ 1) + 3x° = 0.
Answers

1. (y—4x—-c¢)(y—3x—c)=c 2. (y2—a2—0)(y—cx)=0 8. (y—x—c) (x2+y2—0¢)
=0

4. (xy—-ok*®y-0=0 5. (xy—o)x>—y*—¢c)=0 6. (y—e*—c)(y—e*—0)
=0

1 1
7. (y—§x2+c)(y+x+ce’x—1)=() 8.(y2+x3—c)(yz+§x2—c)20‘

EQUATIONS SOLVABLE FOR y

If the equation is solvable for y, we can express y explicitly in terms of x and p.

Thus, the equations of this type can be put as y = f (x, p) (D)
) o dy dp
Differentiating (1) w.r.t. x, we get — =p =F | X, b, —— ..(2)
dx dx
Equation (2) is a differential equation of first order in p and x.
Suppose the solution of (2) is ¢(x, p,¢) =0 ..(3)
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Now elimination of p from (1) and (3) gives the required solution. linear Differential

If p cannot be easily eliminated, then we solve equations (1) and (3) for x and y Eq;;f;tmgrsﬁ rthe
to get
=0, P, 0, y=0, @, 0 NOTES

These two relations together constitute the solution of the given equation with
P as parameter.

SOLVED EXAMPLES
Example 18. Solve y + px =x*p?.
Sol. Given equation is y = — px + x*p? LD
Differentiating both sides w.r.t. x,
dy dp dp
—=p=—p-—x—— +4x°p? + 2x'p —
dx p p=x dx v v dx
dp dp
+tx—— —2px®|2 —=|=
or 2p xdx Jok% (p+xdx) 0
dp 3y —
or 2p+x— | (1 —2px°) =0
dx
Discarding the factor (1 — 2px®), which does not involve j—p , we have
X
2p+x@ =0 or @+2@=0
dx D X
Integrating, log p +2log x=log ¢
or log px? =log ¢
or pxi=c¢ = p= %
x
Putting this value of p in (1), we have y = — % + 2.
Example 19. Solve y = 2px — p2.
Sol. The given equation is  y = 2px — p? (D)
Differentiating both sides w.r.t. x, dy =p=2p+2 dp _ 2p dp
dx dx dx
dp
or pt+tQ@x—-2p)— =0
dx
or J2) @ +2x—-2p=0
dp
or @+2 x=2 ..(2)
dp p
which is a linear equation.
2
ILF. = eJ;dp =28 P — p?

- The solution of (2)is xLF. = J‘ZI‘F‘dp te

or ap? = j2p2dp +c
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Ordinary Differential

2 2 3 2 -2
Equations or xpe = g p°+c or x= g ptcep ..(3)

. . . 2 _
Putting this value of x in (1), we have y=2p (gp +cp 2) —p?

NOTES )
or y=§p2+20p*1‘ (4@

Equations (3) and (4) together constitute the general solution of (1).

EXERCISE D
Solve the following equations:
1. xp?2—-2yp+ax=0 2.y —2px =tan"! (xp?) 3. 16x2+ 2p2y — p?x=0
4. y=x+2tanlp 5.y=3x+1logp 6. x—yp=ap?
4
d
7. x2(&) +2x—y—y=O‘ 8.y =2px—xp?
dx dx
Answers
1. 2y=cx2+g 2.y=2+cx+tanlc 3. 16+ 2c2y—c3x2=0
c
- -1 - p-1 -1 - 3
4. x=log —tan'p+c¢ y=log +tan!p+c  5.y=3x+log
2 9 1- 3x
p +1 p +1 ce
1
6. x= -2 (c+asin'p),y=———= (c+asin'p)—ap. T.y=c*+ 2Jcx .
V1- p2 V1- p2
8. y= 2ex —c.

EQUATIONS SOLVABLE FOR x

If the equation is solvable for x, we can express x explicitly in terms of y and p.
Thus, the equations of this type can be put as x = f(y, p)

(D)
dx 1 dp
Differentiating (1) w.r.t. y, we get —=—=F (y, D, —J .2
g (D Y, weget o= dy 2
Equation (2) is a differential equation of first order in p and y.
Suppose the solution of (2) is ¢ (y, p,¢) =0 ..(3)

Now elimination of p from (1) and (3) gives the required solution.

If p cannot be easily eliminated, then we solve equations (1) and (3) for x and y
to get

=0, 0, 0),y=0, (D, 0)
These two relations together constitute the solution of the given equation with
P as parameter.
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SOLVED EXAMPLES

Example 20. Solve y = 2px + y2p?.

Sol. Solving for x, we have x = 5(1 - yzpzj

Differentiating both sides w.r.t. y

de 1 _1(1 y dp 5 o 2 dp
— =22 P 9 2
dy =7 2(}) Ty 2P WPy
d,
or 2p=p—y-L_2ypt-2y2p* L
dy dy
dp dp dp
or Pt 2ty —=+2y%p® —= =0 or p(1+2yp°) +y 5~ (1+2p°) =
dy dy y
or (p + y@J (1+2yp*) =0
dy

Discarding the factor (1 + 2yp®) which does not involve d_p , we have

Y
d, d d,
pty _p =0 or _y + _p =(
dy y P
Integrating, logy+logp=loge or py=c or p= <
Yy
Putting this value of p in the given equation, we have
9 3
y= XL o y2=2cx+ ¢
Yy Yy

which is the required solution.

Example 21. Solvep =tan | x - p 5|
1+p

p

Sol. Solving for x, we have x =tan™' p +
2
1+p

Differentiating both sides w.r.t. v,

de _1_ 1 dp (+p»)-2p° dp
dy p 1+p? dy a+p%? dy

2 2
9 202 d 2
or 1.2 p)zzp P o dy———pzzdp
p 1+ p?) dy 1+ p%)
Int ti P
ntegrating, c
g g Yy 1 2

Equations (1) and (2) together constitute the general solution.

0

(1)

(2

linear Differential
Equations of the
First Order

NOTES
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Ordinary Differential EXERCISE E

Equations
Solve the following equations:

1. y=3px+6p? 2. y=2px+ p?y
NOTES 3. p’—4xyp+8y*=0 4. y*log y = xyp + p*

5. x=y+alogp 6. x=1y+ p?

Answers
1. y?>=3cx+6c2 2. y2=2cy+ ¢ 3. 64y = c(c — 4x)*
5 _pP
4. logy=cx+c 5.x=c+alogp_1, y=c—alog (p-1)

6. x=—2p—2log(1—p)+c, y=—p>*—-2p—2log(1—-p)+ec.

CLAIRAUT’S EQUATION

An equation of the form y=px+f(p) (D
is known as Clairaut’s equation.

Differentiating (1) w.r.t. x, we get
dp ,. . dp , dp
p=ptx o +f'®0) oo or l+/' )] -=0
. ) dp
Discarding the factor [x + f’(p)], we have T 0
Integrating, p=c
Putting p =cin (1), the required solution is p = cx + f(c)

Thus, the solution of Clairaut’s equation is obtained by writing ¢ for p.

SOLVED EXAMPLES

Example 22. Solve (y —px) (p — 1) =p.
Sol. The given equation can be written as

y—px=L or y=px+ P
p-1 p-1

c
c-1

Note. Many differential equations can be reduced to Clairaut’s form by suitably changing
the variables.

Example 23. Solve e® (p — 1) +e% p? = 0.

Sol. [In problems involving e and e™, put X = e** and Y = ¢/, where k is the
H.C.F. of [ and m].

This is of Clairaut’s form. Hence putting ¢ for p, the solution is y = cx +

Put X=e* and Y=e¥
so that dX =2e*dx and dY =2e% dy
2x dY
p=ﬂ=e ayY XP, where P = ——

dX

dx % d_X:?
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X Xz linear Differential
The given equation becomes X?| =P -1 |+Y - —2P2 =0. Equations of the
Y Y First Ovder
or XP-Y+P2=0 or Y=PX+P?2 which is of Clairaut’s form.
Its solution is Y = ¢X + ¢? and hence e% = ce?* + ¢2. NOTES

Example 24. Solve (px —y) (py +x) = 2p.

Sol. Put X=a?and Y = y? sothat dX=2xdx and dY=2ydy
_dy_x dY VX, o dY
P~y y dX Y Where BT gx

The given equation becomes

VX JX VX
[WP.JX—N][FP-Jﬁ&]—ZWP

2P
or PX-Y)Y®P+1)=2P or PX—Y—m
2P L ) ,
or Y = PX — —— which is of Clairaut’s form.
P+1
2
Its solution is Y = ¢X — and hence y? = cx? — c
c+ c+1

EXERCISE F

Solve the following equations:

a
1. y=xp+; 2.y=px+1[a2p2+b2
3. sinpxcosy=cospxsiny+p 4. xp>—yp+a=0
5 (x-—a)p*+@-yp-y=0 6. p=log (px —y)
7. p=sin (y — px) 8. p?(x2—1)—2pxy+y>*—1=0
9. e (p-1)+p3e»=0 10. &2 (y — px) = yp?
11. (v + px)?2 = x2p.
Answers
a
1. y=cx+; 2.y=cx+1la202+b2 3.y=cx—sinlc
a ac?
4. y=cx+ = 5. y=cx— 6. y=cx—e
c c+1
7. y=cx+sinle 8. (y—cx)2=1+¢c2 9. ¢V = ce* + ¢?

10. y?=cx?+ ¢ [Hint. Put a2 =X, y? =Y] 11. xy = cx — 2. [Hint. Put xy = v]
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Ordinary Differential
Equations

NOTES

4. LINEAR DIFFERENTIAL
EQUATIONS OF SECOND AND
HIGHER ORDER

STRUCTURE

Definitions

The Operator D

Theorems

Auxiliary Equation (A.E.)

Rules for Finding The Complementary Function

The Inverse Operator

Rules for Finding The Particular Integral

Method of Variation of Parameters to Find P.I.
Homogeneous Linear Equations (Cauchy-Euler Equations)
Legendre’s Linear Differential Equation

Linear Differential Equations of Second Order

Complete Solution in Terms of Known Integral

To Find a Particular Integral of + P + Qy =0

Removal of the First Derivative (Ruduction to Normal Form)
Transformation of theEquation by Changing the Independent Variable

Method of Variation of Parameters

DEFINITIONS

d"y

A linear differential equation is that in which the dependent variable and

its derivatives occur only in the first degree and are not multiplied together. Thus, the
general linear differential equation of the n' order is of the form

dn—ly

dx"
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A linear differential equation with constant co-efficients is of the form Linear Differential

L ) Equations of Second and
" e ne d Higher Ord.
dy+a1d 311+a2d 321+ ______ +an—1_y+any:X (D igher Order
dx" dx™" dx"" dx
where a,, a,, ...... ,a, ;, a, are constants and X is either a constant or a function of x NOTES

only.

THE OPERATOR D

The part di of the symbol % may be regarded as an operator such that when
X X

it operates on y, the result is the derivative of y.

o d2 dS dn
Similarly, = —_ . , may be regarded as operators.
dx?’ dx® dx"
2 n
For brevity, we write a_ D, d—z =D?,...... , a _ D"
dx dx dx"

Thus, the symbol D is a differential operator or simply an operator.

Written in symbolic form, equation (1) becomes

(Dn + aan—l + a2Dn—2 4o + an—lD + an)y =X
or fD)y =X
where f (D) =D"+ a,D" '+ @,D" 2+ +qa, D+a

r.e., f(D)is apolynomial in D.
The operator D can be treated as an algebraic quantity.
Thus D@ + v) =Du + Dv
D(u) =ADu
DPDeu=DP9u
DPD%u = DIDPu

The polynomial f(D) can be factorised by ordinary rules of algebra and the factors
may be written in any order.

THEOREMS

Theorem 1
fy=y, y=y,...y =y, are n linearly independent solutions of the differential
equation
Dr+a, D +a,D2+ +a )y =0 0

then u=c,y, +cyy, +  + ¢y, 1s also its solution, where c,, c,, ..., ¢, are arbitrary
constants.
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Ordinary Differential
Equations

NOTES

Proof. Since y =y,, y =y,,.... y =y, are solution of equation ().
])ny1 + Gan71y1 + a2Dn72y1 + o + anyl = 0
Dny2 + aan—1y2 + a2Dn—2y2 4o+ any2 =0

...(@0)

Dnyn + aanflyn + a2D"*2yn 4o+ anyn =0
Now D"u+ a, D" 'u+ a,D"2u+ - +au
=D (ey; ey, ot ey,
+a, D" ey, F gy, o ey,
+a, D" ey, oy, to ey,
ta,(cy; ey, ey,
=¢;(D"y; +a; D"y, +a, D2y, o+ ayy)
+c,(D"y, + a, D"y, + a, D2y + - +ay,)
n

+ Cn(Dnyn + aanilyn + (I2Dn72y2 toe + anyn)

=¢,(0) + ¢,(0) + -+ + ¢, (0) [+ of ()]
=0
which shows that u =c,y, + ¢y, + - +¢,y,1s also the solution of equation (7).
Since this solution contains n arbitrary constants, it is the general or complete
solution of equation (7).

Theorem 2

If y =u is the complete solution of the equation f(D)y = 0 and y =v is a particular
solution (containing no arbitrary constants) of the equation f(D)y =X, then the complete
solution of the equation f(D)y =Xisy=u +u.

Proof. Since y = u is the complete solution of the equation f(D)y =0 ()
fD)u=0 ... (i)
Also y = v is a particular solution of the equation f(D)y =X ...@1)

fD)v=X ...@v)

Adding (i1) and (iv), we have f(D)(u +v) =X

Thus y = u + v satisfies the equation (iiz), hence it is the complete solution
(C.S.) because it contains n arbitrary constants.

The part y =u is called the complementary function (C.F.) and the party = v
is called the particular integral (P.1.) of the equation (ii1).

The complete solution of equation (it7), is y = C.F. + P.I.

Thus n order to solve the equation (iti), we first find the C.F. v.e., the C.S. of

equation (1) and then the P.1. i.e., a particular solution of equation (iit).

AUXILIARY EQUATION (A.E.)

Consider the differential equation
O™+ a, D"t + @, D2+ e +a)y=0 ..@@)
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Let y = e™ be a solution of (i), then Dy = me™, D2y = m2e™ ,......, D" 2y = m™2em

Dn—ly — mn—lemx, Dny = mne™

Substituting the values of y, Dy, D%y, ...... , D" in (1), we get
(mn + almn—l + a2mn72 R + a’n) emx = ()
or m"+a,m™t +a,mE + o +a, =0, since e™ # 0 ()

Thus y = e will be a solution of equation (7) if m satisfies equation (it).
Equation (i) is called the auxiliary equation for the differential equation (7).
Replacing m by D in (i7), we get D" + @, D" + @,D"2 + - +a,=0 .. (Ui)

Equation (17) gives the same values of m as equation (7it) gives of D. In practice,
we take equation (zi1) as the auxiliary equation which is obtained by equating to zero
the symbolic co-efficient of y in equation (7).

Definition. The equation obtained by equating to zero the symbolic co-efficient
of y is called the auxiliary equation, briefly written as A.E.

RULES FOR FINDING THE COMPLEMENTARY FUNCTION

Consider the equation (D" +a, D"+ a,D"2 +...... +a)y=0 0
where all the a/s are constant.

Its auxiliary equation is D"+ @, D! + @,D" 2+ - ta,= ()

Let D =m,, my, m,,......, m  be the roots of the A.E. The solution of equation (7)

depends upon the nature of roots of the A.E. The following cases arise:
Case 1. If all the roots of the A.E. are real and distinct, then equation (11) 1s
equivalent to
O-m)MD=my)...0-m)=0 .. (i)
Equation (zit) will be satisfied by the solutions of the equations
DO-m)y=0, DO-my)y=0,...... ,D-=m)y=0

. d
Now, consider the equation (D —m,)y =0, i.e,, d_ilc -myy=0

.—m dx _
It is a linear equation and I.F. = eJ T

its solution is  y.e ™" = JO e M dx+e; or y=ce™*

myXx
e2

Similarly, the solution of (D —m,)y =01isy = ¢y
the solution of (D —m )y =01isy =c, "=
Hence the complete solution of equation (1) is

y=c e 4y 4 +c e’n ...(v)

Case II. If two roots of the A.I. are equal, let m, = m,,.

The solution obtained in equation (v) becomes

y=(c; ey ™

Linear Differential

Equations of Second and

Higher Order

NOTES
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Ordinary ng‘erenﬁal It contains (n— 1) arbitrary constants and is, therefore, not the complete solution
Equations of equation (7).

The part of the complete solution corresponding to the repeated root is the
complete solution of

NOTES
DO-m)D-m)y=0
Putting (D —m )y = v, it becomes (D —m)v=0 1., % -mu=0
X
As in case [, its solution is v = ¢, ™"
d mqx
D —my)y=ce™* or d_ilc_ myy=ce!

which is a linear equation and L.F. = e ™"

its solution is  y .e” ™" =I cie™ . e” ™ dx+c,=c vt ey
or y=(c,x+¢y) gm*
Thus, the complete solution of equation (i) is
y=(Cx+cy) €™ +cge™ 4 +c e

If, however, three roots of the A.E. are equal, say m, =m, =m,, then proceeding
as above, the solution becomes

y=(c 0%+ cx ) €M 4™ 4 +c,e™"
Case III. If two roots of the A.E. are imaginary, let
m;,=o+if and m,=o—if
The solution obtained in equation (v) becomes
y=c, TP 4ol 0T f o g @™
= ™ (™ +cpe ) 4 cge™ 4 g @™

= e™(C, cos Bx + C, sin ) + c,e™" + o + €™
[Taking ¢, + ¢, = C,, i(c, — ¢,) = C,]
Case IV. If two pairs of imaginary roots be equal, let
m,=my,=o+i and m,=m,=o—if

Then by case 11, the complete solution is

y = e [(clx + 02) CoS Bx + (CSx + 04) sin Bx] —+ C5em5x 4 oeeenn +c,e™
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SOLVED EXAMPLES

3
Example 1. Solve: a’y _ 7 dy _ 6y =0.
dx? dx

Sol. Given equation in symbolic form is (D? — 7D —6)y =0
Its AE.is D2°—=7D—-6=0 or OD+1)D+2)D-3)=0

whence D=-1,-23

Hence the C.S.is  y=c,e™ + c,e 2 + o™
Example 2. Solve: (D°—4D?+4D)y = 0.
Sol. The AE.isD?-4D?+4D =0 or D[D?-4D +4) =0

or DD -22%=0
whence D=0, 22
Hence, the C.S is ¥ =c e+ (et e or y =gt (ex e
4 2
Example 3. Solve: % +13 % + 36y = 0.
Sol. Given equation in symbolic form is (D* + 13D? + 36)y = 0
Its AE is D*+13D?+36=0
or D2+ 4HD2+9 =0 s D=x21,+ 3
Hence the C.S. is y = €% (¢, cos 2x + ¢, sin 2x) + €% (¢, cos Bx + ¢, sin 3x)
or Yy = ¢, €COS 2x + ¢, sin 2x + ¢, cos 3x + ¢, sin 3x.
Example 4. Solve: % +4x =0.
Sol. Given equation in symbolic form is (D* + 4)x = 0, where D = %
Its A K. is D*+4=0 or (D*+4D?+4)-4D2=0
or D?+22-2D)¥2=0 or (D2+2D+2)(D?2-2D+2)=0
whence D=$ and#i.e.,DZ—liiandlii
Hence the C.S. is x=e'(c,cost+c,sint)+e (c,cost+c, sin i)
Example 5. Solve: y” — 2y + 10y =0, given y(0) =4, y'(0) = 1.
Sol. Given equation in symbolic form is
(D2 —2D + 10)y = 0
Its A E. is D2-2D+10=0
_ D:2i 4_40:2i6l:1ﬂ:3i
2 2
The C.S. is y =e* (c; cos 3x + ¢, sin 3x) (D)
Nowy(0)=4 = y=4 whenx=0
4=c
Equation (1) becomes y =e* (4 cos 3x + ¢, sin 3x) ..(2)
so that ¥y =e* (4 cos 3x + ¢, sin 3x) + e* (— 12 sin 3x + 3¢, cos 3x)
Since y'(0)=1 1i.e, y =1, whenx=0
1=4+3c, = c¢,=-1
Equation (2) becomes y = e* (4 cos 3x — sin 3x), which is the required particular
solution.

Linear Differential

Equations of Second and

Higher Order

NOTES
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Ordinary Differential
Equations

EXERCISE A

Solve the following differential equations:

NOTES L.

11.

12.

13.

14.

15.

16.

17.

10.

12.

16.
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9 2
Ty 4B gy, Z.d—2+(a+b)—+aby 0.
d% . dy d% dx
dx2 . y d2+ dt+ X
d3 d%y _ dy dy .d . dy
—5-3—5+3—-y=0. 6.—+6 +11—+6y=0.
dx dx dx dx® dx? dx
dty _d% dty . d%
5—+4 0. 8 — +6—=+9y=0
dxt v= dx* x? Y
d3y
D2+ 13 D2+D+1)2y=0. 1o.ﬁ+y=0.
x
d’y n
el +y =0, given that y(0) =2 and y[Zj =-2.
2 d
ﬂ—3£+2x=0,giventhat,whent=0,x:0and—x=0.
2
d—‘g+4ﬂ+29y20,giventhat,WheanO,y:OandQ=15‘
dx dx dx

d*x

If -0 = = m*x, show that x = ¢, cos mt + ¢y sin mt + ¢, cosh mt + ¢, sinh mit.

dt '

Solve the differential equation: 9y” + 3y” — 5y" + y = 0.

dy d%y dy _ s _
Solve the differential equation —< + 6 —= +12 == + 8y = 0 under the conditions y(0) =

dx? dx? dx
0, ¥(0) = 0 and y(0) = 2
Solve the diff tial ti df2i+5£+i—0 here R2C =4L and R, C, L

olve the erential equation 2 Tate ° where = and R, C, LL are
constants.
Answers

— 5x —x —~bx
y=c e +c,e
y=c¢ o2+V3)x 2-3)x
1

¥ =(c; + e + cx%) e

2.y=cie+cue

4.x=(c; + cyl) e

= —x —2x —3x
6.y =ce™ + e+ cqe

+ Coe

Y=ttt et e 8oy = (gt ¢yx) cos V3 x+ (cg + ¢ 2) sin V3 x
¥ =(c, + cx + cx%) cos x + (¢, + cx + ¢x?) sin x
1

te 2 {(@ + cgx) cos g x + (cg + c19%) sin 73 x

3x . 3x .
y=ce+ev/|Co COST“‘CS sin D) 11. y =2 (cos x — sin x)

1

13. y =3¢ sin bx 15. y = c,e™ + (cy + €g%) es
Rt

(e +cyt) e 2L,

x=0

y = xZe 2 17. 1=



Linear Differential
1 Equations of Second and
THE INVERSE OPERATOR ﬁ Higher Order

1 NOTES
Definition. m X is that function of x, free from arbitrary constants, which

when operated upon by f(D) gives X.

Thus /(D) {L X} =X

f(D)
1 .
f(D) and are inverse operators.
f(D)
1
Theorem 1. m X s the particular integral of f(D)y = X.
Proof. The given equation is f(D)y = X NE))
1
Putting y = —— X in (1), we have
8Y= 2D 1)

1
f(D) {mX}ZX or X=X

which 1s true.

1
= —— X is a soluti f(1).
y D) 1s a solution of (1)

Since it contains no arbitrary constants, it is the particular integral of f(D) y = X.

Theorem 2. % X = jX dx.
Proof. Let iX—
roof. Let D =)y

1 d
Operating both sides by D, we have D (B XJ =Dy or X= d—z
Integrating both sides w.r.t. x

y:dex,

. . . 1 . :
no arbitrary constant being added since y = ) X contains no arbitrary constant.

iX=J‘de.
D
1 ax —ax
Theorem 3. X=e JXe dx.
D-a
1
Proof. Let X=y
D-a
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Ordinary Differential 1
Equations Operating on both sides by (D —a), (D — a) (D——a XJ =D -a)y
dy . dy
or X=—7-ay ie, ——-ay=X
NOTES dx d ¥
J. — adx

=

which is a linear equation and [.LF. = e

Its solution is ye % = j X e ® dx, no constant being added

or yzeaxJ.Xemdx

1
D-a

Hence, X = eaxj e ™ Xdx.

RULES FOR FINDING THE PARTICULAR INTEGRAL

Consider the differential equation,

O™+ a, D1+ a, D2+ L ta,  D+a)y=X
It can be written as f (D)y =X
1
PlL.=——X
f(D)

Case I. When X = e*
Since, D e =q e™

Dre® = g e

(Dn + (’1 Dn—l + (12 Dn72 4o + an—lD + an) X
— (an + (’1 an—l + (12 an—2 4o + an—l a+ an) X
or (D) e* = f(a) e**
1
Operating on both sides by ——.
p mng 1 y £(D)
L e =t (f@e™) or o = fla) e ™
f(D) f(D) 7 fD)
1 1
Dividing both sides by f(a), —— e* = e provided f(a) # 0
widing 1 y f(a@) @) D) provided f(a)
1 . 1

e™ , provided f(a) = 0.

Hence,

fm° " fa

Case of failure. If f(a) = 0, the above method fails.
Since f(a) =0, D =ais a root of A.E. f(D) =0

D —a is a factor of f(D).
Let fD) =@ —a) o (D), where ¢ (a) #0
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1 . 1 ax 1 1 . 1 1 . Linear Differential

Th = = . = . ;
o D) TD-@o®° D-a 0@ D-a o@ e Secondad
1 1 1
— . ax — ax ax . —a.QCd B
v a" @ e y NOTES
Theorem 3]
1 _ 1w ..
_q)(a)e jldx—x.q)(a)e ... (i)
Differentiating both sides of (i) w.r.t. D, we have /" (D) =D —a) ¢’ (D) + ¢ (D)
= (@) =¢ (a)
From (ii), we have f(:;)) e =x. meax , provided f' (a) #0
If f(a) = 0, then f(—}))e“’“ =x2. f”ta) e, provided f”(a) # 0
and so on.
SOLVED EXAMPLES

Example 6. Find the P.I. of (4D + 4D — 3) y = e**.
1 o 1

Sol. Pl = e = e” (replacing D by 2
© ADZ+4D-3° 4@ 143 (eplacng Dby
i
21
Example 7. Find the P.I. of (D? + 3D + 2)y = 5.
1
Sol. Pl =—5——(5e") e e =1
© D? +3D +2 Loe |
=5. N e* (replacing D by 0)
0+0+2
_5
)
Example 8. Find the P.I. of (D? - 3D? + 4)y = .
Sol Pl = ;em
o T D -3D 44

Here the denom. vanishes, when D is replaced by 2. It is a case of failure.
We multiply the numerator by x and differentiate the denominator w.r.t. D.
PL=x. + ™
3D“ -6D
It is again a case of failure. We multiply the numerator by x and differentiate
the denominator w.r.t. D.

PI =x2. 1 ¥ =x?. 1 e x* e2*.
6D-6 6(2)-6 6
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Case II. When X =sin (ax + b) or cos (ax +b)
D sin (ax + b) = a cos (ax + b)
D2 sin (ax + b) = (- a?) sin (ax + b)
D3 sin (ax + b) = — a® cos (ax + b)

D* sin (ax + b) = a* sin (ax + b)

or (D2)2 sin (ax + b) = (- a?)? sin (ax + b)
In general, (D?”sin (ax + b) = (— @?)" sin (ax + b)
f(D?) sin (ax + b) =f (— a?) sin (ax + b)
1
@] t both sides by ———,
perating on both sides by D%
‘ 1 .
£(D?) (f(D? sin (ax + b)) = £(D?) [f(— a?) sin (ax + b)]
or sin (ax + b) = f(— a?) sin (ax + b).
Dividing both sides by f(— a?),
1 . 1
b sin (ax +b) = 0% sin (ax + b), provided f(— a?) # 0.
-a
Hence, %) sin (ax + b) = ﬁ sin (ax+b), provided f(- a2) =0
-a
. 1 1
Similarly, %) cos (ax +b) = m cos (ax +b), provided f(- a%) #0
Case of Failure. If f(—a? =0, the above method fails.
Since cos (ax + b) + i sin (ax + b) = e'lax b | Euler’'s Theorem
1 .
1 +b+/ y 1 +b — i(ax + b)
f(DZ) [cos (ax + D) + 1 sin (ax + )] f(DZ) e
[If we replace D by ia, f(D?) = f(— a?) = 0, so that it is a case of failure]
1 ; 1
=x. me‘(a’”b) =x. f’(DZ) [cos (ax + b) + i sin (ax + b)]
Equating real parts
1 1
D cos(ax+b) = x. %) cos (ax + b), provided f'(- a?) #0
Equating imaginary parts
f(:)z) sin (ax+ b) =x . f’(:)z) sin (ax + b), provided f'(- a?) #0
If f(— a?) =0, then
05 sin (ax + b) = x2. 707 sin (ax + b), provided f”(—a?) # 0
) cos (ax + b) =x2 . Iz (:;)2) cos (ax + b), provided /(= a?) # 0
and so on.



Example 9. Find the P.1. of (D° + 1)y = sin (2x + 3). Linear Differential

1 Equations of Second and
Sol. PI = D% 11 sin (2x + 3) = m sin (2x + 3) Higher Order
: 2—_ 92
[Putting D 29] NOTES
= sin (2x + 3)
1-4D
Multiplying and dividing by (1 + 4D)
1+4D 1+4D
= in(2x+3)=———sin 2x + 3
(1-aD)(1+4D) S BT D= T gpz S D)
144D @+ 3) [Putting D? = — 27|
= b tin = _
—16C 2% sin (2x utting

1
= 55 [sin 2x+3) + 4D sin (2 + 3)]

1 d
= &5 [8in (2x+ 3) + 8 cos 2 + 3)] v D=—
Example 10. Find the P.I. of (D? + 4)y = cos 2x.

Sol PI 1 cos 2x
ol. 1 =—
D? +4

Here the denominator vanishes when D is replaced by — 22 = — 4. It is a case of
failure. We multiply the numerator by x and differentiate the denominator w.r.t. D.

1 X .. i _
P‘I‘:x.ECOSZxZEJ‘COSZxdx [ Df(x)—jf(x)dx}

= % sin 2x.
Case III. When X =x™, m being a positive integer.
1
Here, IL=—x"
f(D)

Take out the lowest degree term from f(D) to make the first term unity (so that
Binomial Theorem for a negative index is applicable).

The remaining factor will be of the form 1 +¢ (D) or 1-0¢ (D)
Take this factor in the numerator. It takes the form
[1+o DI or [1—0@D]!

Expand it in ascending powers of D as far as the term containing D™, since
D™ (k™) = 0, D2 (&) = 0 and so on.

Operate on x™ term by term.

Example 11. Find the P.I. of (D? + 5D + 4)y =x? + 7x + 9.

Sol. PlL=— T (?+7x+9)= 1 (2 + T+ 9)
D®+5D+4 5D D?2
41427+
4 4

1 5D D?
:Z 1+ T+T (x2+7x+9)
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Ordinary Differential r 9
Equations —l 1- @_{_D_z + @_{_D_z — (2+7 +9)
= , ) 1 el X X
2 2
NOTES _1/,.5D_D7 25D 2
=1 1 1 6 x*+7x+9)
_l 1_@+21D2 2+7 +9
=1 1 6 (x x+9)
1 (x2+7x+9)—éD(x2+7x+9)+£D2(x2+7x+9)}
4| 4 16
-1 (xz+7x+9)—é(2x+7)+£(2)}:l(x2+gx+§)‘
4| 4 16 4 2 8

Case IV. When X =e®™ V, where Vis a function of x.
Let u be a function of x, then by successive differentiation, we have
De*™u)=e*Du+ae*u=e* D+ ayu
D2 > u)=D [e* (D + a) u] = e* (D? + aD) u + ae™ (D + a)u
=e® (D?+2aD+ad)u=e*D+a) u

Similarly, D3 e u)y=e* D+ a)u
In general, D" (™ u)=e* D +a)" u
D) e®u)y=e*fO+a)u
Operating on both sides by %,
f(—})) D) @ 1] = 7 1o D +
= e¥y = f(:]l)) [e™ f(D + a)u] ()
Now let fD+a)u=V, ie, u= _1 A"
fMD+a)
From (i), we h w_ 1 _y-_1 (e
rom (1), we have e D +a) = D)
1 ax _ ax 1
or f(D)(e V) =e —f(D+a)V‘
1

Thus e® which is on the right of may be taken out to the left

f(D)
provided D is replaced by D + a.

Example 12. Find the P.I. of (D?— 4D + 3)y = e* cos 2x.

Sol. P‘I‘ZZ;excost:ex 5 1 cos 2x
D*-4D+3 D+1)*-4D+1)+3
A 1 A .
="~ cos2x=¢" cos 2x utting D2 = — 22
D% -2D -22_9D o . |
Z—Eex 1 costZ—lexLCOSZx
2 24D 2 (2+D)2-D)

116  Self-Instructional Material



1 2-D 1 2-D
5 cos2x=——ex—zcos2x
4-D 2 4-(-2%

1
:_1_16 e (2cos 2x—D cos2x)=—1—6 e (2 cos 2x + 2 sin 2x)

1
=— 3 e* (cos 2x + sin 2x).

Case V. When X is any other function of x.
Resolve f(D) into linear factors.
Let fD)=O-m)MO —-my) - DO-m,)

1 1

Then P.I. = X = X
en f(D) (D-m))D —my) e (D-m,)
A A A
- —+ 2 + — X (Partial Fractions)
D-m; D-m, D-m,
= Al 1 X+ A2 1 D, QI + A 1 X
! D-m, D-m,

= A1 eﬂth‘Xe—mlx dx +Azem2xJ‘ Xe—mzxdx Foerens +Anem”x J‘ Xe_m”xdx

[ Dilm X=e™ '[ Xe_mxdx]‘

Remark. We know that e®=cos 0 + isin 0 (Euler’s Theorem)

X" sin ax = Imaginary part of x* (cos ax + 1 sin ax)

= L.P. of x"eiax
and X" cos ax = Real part of & (cos ax + i sin ax)
= R.P. of x"%e',
Example 13. Solve (D? - 6D2+ 11D - 6)y = e 2 + %,
Sol. AE.is D®—-6D2+11D-6=0 or D-DDO-2)D-3)=0
whence D=1,223
C.F.=ce*+ e+ ¢ e™
1
PI = S A
D’ _6D2+11D-3 © ¢
— - 21 e—Zx + - 21 e—3x
D°-6D“+11D-6 D°-6D“+11D-6
1 -2x 1 :
= 3 2 e+ 3 2 e
(-2)°-6(-2)*+11(-2)-6 (-3)°-6(-3)*+11(-3)-6
1 1 1
- 2 _ _—  ,3x—=_ —2x 4 o3
60 ° "120° 120 B
Hence the C.S.is y=C.F.+P.L
re., Y= €5+ eyt + et — ——— (e + ),

120

Linear Differential

Equations of Second and

Higher Order

NOTES
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Ordinary Differential Example 14. Solve (D — 2)%y = 8(e** + sin 2x +x%).
Lonati
quations Sol. AE. is (D —2)? =0 whence D=2, 2
C.F. = (Cl + C2x)e2x

NOTES P.I ~ [8(e2 + sin 2x + 9]

B 1
- (D-2)

=8 1 2ez’“Jr 2s,in2x+;2x2
D-2) D-2) (D-2)
1 .
X, ————— e | Case of failure
2(D-2)
1, )
X2 5 e | Case of failure
2
x_ 62-’5
2

1

Now, ———- e =
(D-2)

—ZsianZZ;sianZZ; sin 2x
(D-2) D“-4D+4 -2°-4D+4

[Putting D? = — 27]

=—isin2x:—ljsin2xdx=—l(— cos2x):l cos 2x
4 4 8

4D 2
-2
D-2) 2-D) ( D) 4 2
4(1-—
2
B 2
1 1_2(_2}%(2) ______ 2
4 2 2 2
:1 1+4D+2D2 4 ... }xz
4| 4
1_ 2 2 3 2 2
== +D +—D
4_x (x*) ) (x )}

2

PL=8|" e+ Leosont 1220+
2 8 4 2

=4x? e* + cos 26+ 2x%2 + 4x + 3
Hence the C.S. is y = (¢, + ¢,x) €* + 4a? e + cos 2x + 247 + 4x + 3.
Example 15. Solve: (D +2)(D— 1)y =¢ % + 2sinh x.
Sol. AE.is D+2)D-1%2=0sothatD=-2,1, 1
C.F.=ce® + (cy + cx) €

Pl =————— (¢2+2sinh:
D+2m-1° sinh )

1 .
“ Diomopr € e + sinhx=® ¢
+ _
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Linear Differential
1 ~ 1 1 _ 1 1 _
o 2% [ 2x:| [ e 2x:| Equations of Second and

Now —_— = — e = 5
D+2)D-1) D+2|(D-1 D+2|(-2-1 Higher Order
1 1 e | C f fail
= —. o 4x ase oI railure
9 D+2 NOTES
— lx.le—Zx :fe—Zx
9 1 9

1 o 1 1 o | 1 1 o
(D +2)(D - 1?2 (D-12|D+2 D-1%|1+2
1 1

ng ex | Case of failure

| Case of failure

1 1
D+2D-1% (1+2-1-12° 4¢

2

-X —-X

PlL=2e2x4 X ovq = ox
9 6 4
2
Hence the C.S. is yzcle*2x+(c2+03x)ex+ge*2x+%e-"'+Ze*-’°l
d?y .
Example 16. Solve o 4y =x sinh x.
x
Sol. Given equation in symbolic form is (D? — 4)y = x sinh x
AE is D2—4=0 sothat D=+2
C.F.=ce* +ce?
1 1 e*—e’ "
Pl =———xsinhx= x
D? -4 D? -4 ( 2 J
1 1 1,
=== et x-———e " .x
2| D* -4 D* -4
1] . 1 . 1
=l —5—x-e " ————x
2 D+1)" -4 D-1)"-4
1] . 1 i 1
==l ———x-e" ———«x
2| D?+2D-3 D?-2D-3
_ 1 e 1 SN e” 1 5
2| _g/1_-2D_D" _g[1,2D_D"
3 3 3 3
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x _ _-x x -x
:_z(uj_z(&}_% sinhx—% cosh x

. x . 2
Hence the C.S. is y = ¢, + ¢,e" — 3 sinh x — = cosh x.

d’y

Example 17. Solve Tt —y =cos x cosh x.
X

Sol. Given equation in symbolic form is (D* — 1)y = cos x cosh x
AE is D*—=1=0 or (D?-1DDO?+1)=0 sothat D=+1,+1
CF.=ce+ce”+ e%x (cy cos x + ¢, sin x)

— x —x :
= e +C2€ +03008x+04 sm x

1 1 e’ +e"
Pl =— cos x cosh x = — oS X
D* -1 D* -1 2

e cosx +
D* -1 D*-1

N | =

e cos x]

ex—400sx+e_x—400sx
. D+D -1 D-1*-1

N

. 1 Ly 1
cosx t+e COS X
D* +4D? + 6D? +4D D* - 4D? + 6D” - 4D ]

I
N

. 1
C
(- 12)2 +4D(- 1?) + 6(- 1?) + 4D

N
I

0S X

e 1
+e COS X
(- 1*)? —4D(- 1*) + 6(- 1*) - 4D ]

1,1 L1 1(e* +e™™
= —|e" —cCcosx t+e —COSX |[=——| ———| COS X
2 5 5 50 2

2—1 cosh x cos x
5

. . 1
Hence the C.S.is y = ¢, + c,e™ + ¢y cos x + ¢, sin x — 5 cos x cosh x.

2
Example 18. Solve d_g -2 dy +y =xe*sin x.
dx dx
Sol. Given equation in symbolic form is (D? — 2D + 1)y = xe* sin x

AE isD?-2D+1=0 or (D-12%=0 so thatD=1,1
C.F.=(c; * cyx)e”
1

Pl=—"7 ¢
D-12°

Lxsinx=¢'. ————— xsin x
(D+1-1)2



=e* D_lz xsinx=e" % jx sinx dx Integrating by parts

:e”%[x (_cosx)—jl(—cos x)dx]zex% -

=e* J(—xcosx+sinx)dx:ex [—{xsinx—Jl.sinx dx}—cosx}

X COS X + sIn X)

= ¢*|—x sIn X —cos X — cos X] = —e*(x sin x + 2 cos x)

Hence the C.S.is y = (¢; + c,x)e* — e*(x sin x + 2 cos x).

2
Example 19. Solve % — 4y =cosh (2x - 1) + 3~.
X

Sol. Given equation in symbolic form is
(D% — 4)y = cosh (2x — 1) + 3*
AE. isD?-4=0 = D=+2
C.F.=ce* +ce?

Pl = [cosh 2x — 1) + 3%]

D% -4
2x-1 -(2x-1) ¢ _t
:D21 ; e +2e +elog3:||:“_ cosht:e +e andu=e
11 2x-1 1 -(2x-1) oe 3
== e + e + o~ log
2_D2—4 D2_4 D2_4
= 1 _x — e2x—1 L. i e—(2x—1):| + 1 xlog 3
= l _x.—eQx_l +x.ie_(2x_1):|+_ 1 exlogS
2 L 2D 2D (log 3)2 _ 4
X[ 2x-1 —(2x-1) 3%
=— je dx+je dx]+—2
4t (log 3)* - 4
I g%
= — —+ + 5
4] 2 -2 (log 3)? - 4
x [ 281 _ p=(2x-D) g%
4] 2 (log 3)* — 4
~ sinh 2x—-1) + ¥
= — S1 X —
4 (log 3)2-4
x 3%
Hence the C.S. is y = ¢,e% + c,e ™ + =~ sinh 2vx— 1) + ———5——.
ence the 18y =c,e cqe 4 S 2x—-1) log 37 4

Example 20. Solve (D? + 1)y = x2 sin 2x.
Sol. AE. is D2+41=0 = D=4%1
C.F.=c¢ cosx+c,sinx

2

Pl = x? sin 2x = L.P. of x2e2ix

D% +1 D% +1

Linear Differential

Equations of Second and

Higher Order

NOTES
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. . 1
=LP. of e? ————— x? =1P. of &?* —5——— &?
D+2)°+1 D*+4iD-3
. 1
=1.P. of e . 2 x2
-3/1-=iD-—
3 3

. -1
2ix . 2
P of £ 5 {1—(4‘]3;]3 H 2

: 9 . 22
=I‘P‘of—le2ix 1+ 4iD+D + 4iD+D o x2
3 3 3

1, [, 4D (1 16)_,
=P of — = e |1+ —— 4| =-—|D%+...... X2
0 3e _+ 3 +(3 9) + }x

=1.P. of — 1 o%ix | 52 +ﬂ(2x) —E(Z)}
3 L 3 9

=L.P. of - 1 (cos 2x + i sin 2x) (xz —§j+ (S_le
3 9 3
_ 1 §c052x+(x2 _%)sian
303 9
1 .
== [24x cos 2x + (9x% — 26) sin 2x]

1
Hence the C.S.is y = ¢, cos x + ¢, sin x — 97 [24x cos 2x + (9x? — 26) sin 2x].

Example 21. Solve (D* + 2D? + 1)y = x? cos x.
Sol. A K. is D?*+1)2=0 = D=z +1
CF.=(x+cy)cosx+(c,x+c,)sinx

PIlL.=——— x?cosx=RP. of ———— 2?2 (cos x + 1 sin x
(D? +1)2 (D? +1)? ( )
R.P f 1 2 ,ix R.P f 1 1 2

=RP. of ——— x2e*=RP.of e ——— «
(D? +1)2 [(D+0)?% + 1)2
=R.P. ofeix%ﬁ:R‘P. offzix';zx2
(D" +2:D) [2iD(1+D,H
21
ix . -2
=R.P. of e 1 zxZZR‘P‘ofe %(1—£) x2
—4D2(1—iD) -4 D 2
2
1.1 iD iD\?
= —— e — [ 14+2| —|+3| —| +...... x?
R.P. of 4e.D2{+(2)+ (2)+ Jx
1 . 1 . 3
=R.P. of — Z ew . E[xz +1(2x) —2(2)}



=R.P f l i i ﬁ.{.ixz_éx
= n. .0—49 D

4 3 2
“RP.of - Lot | X4 X 3%
1278

=R.P. of — 4_18 (cos x + 1 sin x) [(x* — 9x?) + (4x°)i]

1
T [(x* — 9x?) cos x — 4x® sin «]
Hence the C.S. is

1 .
y=(c,xtc,)cosx+ (cx+¢,)sinx— 18 [(x* —9x?) cos x —4x sin x].

2
Example 22. Solve d_g +y =cosec x.

dx
Sol. Given equation in symbolic form is (D? + 1)y = cosec x
AE. is DZ+1=0 = D=+
: C.F.=c¢ cosx+c,sinx
P1 1 1
1= cosec X=-————cosecx
D? + (D +i)(D -1i)
1 1 cosec x (Partial Fractions)
2 D-
1 1 1
— cosec x— - cosec x
2 D- D+:
1 ax —ax
Now cosec x = e J cosec x e dx D X=e le dx
- -a

= e J cosec x (cos x — 1 sin x) dx = e™ J (cot x —17) dx

= e” (log sin x — 1x)

Changing i to — i, we have - cosec x = e (log sin x + ix)
i

1 .
Pl = % [e** (log sin x — ix) — e ™ (log sin x + 1x)]

eix _ e—ix eix + e—ix
= log sin : - X
0g s x % 2

=log sin x . sin X — X cos X

Hence the C.S. is y =¢; cos x + ¢, sin x + sin x log sin x — x cos x.

d2
Example 23. Solve —;} + a?y = tan ax.
dx

Sol. Given equation in symbolic form is (D? + a?)y = tan ax
AE.is D?+a?=0 = D=zia
C.F.=¢, cos ax + ¢, sin ax

1 1
Pl=—FS——Ftanax="——">——< tana
D? +d? tan ax (D +ia)D —ia) tan ax

Linear Differential
Equations of Second and

Higher Order

NOTES
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Ordinary Differential 1 1 1
Equations = — - tan ax Partial Fractions
2ia [D—ia D+ia} ( )
= 1 1 tan ax — 1 tan ax
NOTES 2ia| D-ia D+ia
Now tan ax = e’ J tan ax . e dx
—ia
sin? ax
= plax j tan ax (cos ax — 1 sin ax) dx = e’ J (sm ax—1 J dx
cos ax
1-cos? ax . . .
elax J sinax —i—— | dx = ¢! j [sin ax —i(sec ax —cos ax)] dx
cos ax
- | cosax sin ax
= elax [————log (sec ax + tan ax) +1 }
a a a
1 .. .
=— ; €' [(cos ax —1 sin ax) + 1 log (sec ax + tan ax)]
1
=— ; e [e79 + 7 log (sec ax + tan ax)]
1
== [1+ e log (sec ax + tan ax)]
Changing i to — 1, we have N tan ax = — 1 [1—iei* log (sec ax + tan ax)]
la a
PI = 1 —l{1+iei“x log (sec ax + tan ax) }
T 2a a

+ 1 {1 -ie”™ log (secax + tan ax)H
a

1 lax 4+ elax
=— = log (sec ax + tan ax) | ——(——
a® 2

= - a_2 log (sec ax + tan ax) . cos ax

. . 1
Hence the C.S. is y = ¢; cos ax + ¢, sin ax — —- cos ax log (sec ax + tan ax).
a

EXERCISE B
Solve the following differential equations:
d3y d2
1. $+y=8+5e’“. z.dx —4y=(1+eY%
2
3. dy dy+5y——2coshx 4.d—‘g— ﬂ+5y—sm3%
dx? dx dx dx
d3y d*y dy d’y dy _
5. () +dx2 +£+y—sm2x (u)—+a—cos2x
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&

10.

12.

14.

16.

18.
19.

20.

21.

23.

25.

217.

29.

31.

32.

3
x
(L) Y y = sin 3x — cos E @) (D? + 1)y =2 cos? x
2 3 2
ly d y 047y  dy
+2—+ = 2 2, +2—5 +— =¥ + 2
(m) dx Yy =e* - cos* x (w) 2 dx e sin 2x
V) (D3—D)z=2y+1+4cosy+2ey,whereDEGli
Y
i) D2+ D+1)y=(1+ sin x)2
(D2 - 4D + 3)y = sin 3x cos 2x.
2

(D2 - 3D + 2)y = 6e? + sin 2x. 9. % + 4y = e* + sin 2x.

3 2

;l Z;ly 43 = e + sin 2x. 11. ;lx‘;, 4y = x2 + 2x.

x> X X

3 2 2
d—g—d—g—6&:1+x2. 13.d—g+ﬁ X2+ 2x + 4.
dx® dx dx dx® dx

dzy 2 3 2 — 9 x
dxz +y=e%+ cosh 2x + x°. 15. (D? -3D + 2)y =2e cos 5.

4

% Z‘z+2y—xe3x+sm2x 17.%—3/—@’“005@6

X
@) (D2 —-2D)y = ¢€* sin x. @)y’ -2y +2y=x+ e cos x
(D2 + 4D + 8)y = 12¢2* sin x sin 3x.

dzy

@) oz + 2y = x%e? + e cos 2x. @) D?+ 4D+ 3)y=e*sin x+ xe>*

(D? + 2D2 + D)y = x2e2* + sin? x. 22. (D2 — 4D + 4)y = 8x2 e2* sin 2x.
L, X d?y .

(D -=1)2(D + 1)2y = sin? 2 +e¥ + x. 24. 2z + 4y = x sin x.
d2

(D2 — 1)y = a2 sin x. 26. _g — 9y = x cos 2x.
dx

D2 -1)y=xsinx+ (1 + x2)e". 28. (D? — 1)y = x sin 3x + cos Xx.

2 2
% + a?y = sec ax. 30. % + 4y =4 tan 2x.
%y . dy
+3 - +2y=
dxz dx Y = e
d%y dy
Solve s +2— T +10y + 37 sin 3x = 0 and find the value of y when x = fbemg given

that y =3, b =0 when x=0.
dx

Answers

V3

5% 3 5
=ce*+e2 |cyCoS—x+cqgSin—x|+3+— e~
y 1 (2 9 3 9 ] 9

1 2 1

2. y= cle2x + 6‘267236 _ Z _ gex Z xex
. 1 1

y=e2%(c, cosx+c,sinx) — — ¥ — = e*
' ? 10 2

1
Yy =e*(c; cos 2x + ¢, sin 2x) + % (3 cos 3x — 2 sin 3x)

Linear Differential

Equations of Second and

Higher Order

NOTES
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Ordinary Differential . 1 .
Equations 5. ()y=ce*+c,cosx+cysinx+ — (2 cos 2x —sin 2x)

_ 1, .
(i) y=c1 +coe " +E(sm 2x — 2 cos 2x)

NOTES 1 ( J3 J

5% 3 .
2 | ¢g cOS — x + cg sin — x
2 2

1
+ —— (sin 3x + 27 cos 3x)

6. ) y=ce~+
@ y=cee e 730

1 1 .
— ——— (cos x —sin Xx)
2 4

X
.. - 9 . 1 .
(i) y=cie™™ +e? (02 c0s73x+03 s1n§x}+ 1+g(cos 2x — 8 sin 2x)

1
PP N L A
@) y = (cy + cx)e +9e 2" %50 (3 cos 2x — 4 sin 2x)
2

V) y=c +(c,+ e~ - % e+ %(8 cos 2x — 4 sin 2x)

(U)z=c1+czey+c3e_y—yz—y—2siny+yey

3

X
. -3 3 . 3 1 . 3
(i) y=e €1 COS — X + €y SIN — X |+ — — 2 c0os ¥ — — sin 2x + — cos 2x
2 2 2 13 26

1 1
. — X 4 3x+ R 1 : x) + — : x+ 3
7. y=cettce 884 (10 cos 5x — 11 sin 5x) 20 (sin x + 2 cos x)

8 — X 4 2x+i —3x+i 3 92 in 2
. y=cettce 10 e 20( cos 2x — sin 2x)

. 1
9. yzclcos2x+02sm2x+gex—§cos2x
. 1, .
10. y=c, +e"(c,cos /3 x+ cysin 3x)+§(ex+sm2x)

1 1
11. =ceX+ce™_ = x2+2x+—)
Y4 2 4( 2

B o, 1[5 x* 25
12. y=c tcetege “1s X —7+?x

3
13. yzcl+cze*x+% + 4x

2 +% cosh 2x + 3 — 6x

. 1
14. yzclcosx+c2smx+ge
15 =c, e+ ce?* §ex 2 sin X + cos ~
CYTar e Ty 2 2
1 1 )
16. y=ce*+ ce® + Z e (2x—3) + 20 (3 cos 2x — sin 2x)
1
17. y=ce+ce*+cycosx+c,sinx—— e“cosx
1 . . % . 1 s
18. (L)yzcl+czezx—§exsmx (i) y=e (clcosx+czs1nx)+§(x+1+xe sin x)
. 1 .
19. y=e 2 (c, cos 2x + ¢, sin 2x) + 2 e 2% (3x sin 2x + cos 4x)

3x x
. . e 9 12 50 e .
20. = x+ x+ -——x+—|+— 2x — 2
(1) y=1c, cos y2x+ ¢, sin 4/2 x T (x Hx 191 7 (4 sin 2x — cos 2x)

5 24 12

.. 1 _ ) 1 5
(i) y=cie™ + cpe® — e ¥ (sin x+ 2 cos x) + —esx(x )
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1 1 1
21, y=c, +(cy+ e+ 108 e>* (6x2 - 14x + 11 +§x + 100 (3 sin 2x + 4 cos 2x)

22, y=(c; + c)e® — e [4x cos 2x + (227 — 3) sin 2]

1 1 2
23. y=(cl+c2x)ex+(03+c4x)e’x+§—§ cosx+% e+ x

1
24. y=c, cos 2x+ ¢, sin 2x + = (3x sin x — 2 cos x)

9

1
25, y=c e+ c2e*x—xcosx—§ (x*=1) sin x

1
26. y=c,e*+c, e~ —— (13x cos 2x — 4 sin 2x)
! g 169

1
27. y=ce+ et - 3 (x sin x + cos x) + 12 xe* (2x% —3x+9)

1 . 1
28. y=cett et —— 2 sin 8x + > cos 3x | - = cos x
10 5 2

log cos ax}

. 1 .
29. y=c,cosax+c,sin ax+ —| xsin ax + cos ax
a a

30. y=c, cos 2x+ ¢, sin 2x — cos 2x log (sec 2x + tan 2x)

x
8l. y=ce¥tcete® of

32. y=e"*(c,cos 3x+ cysin 3x) + 6 cos 3x—sin 3x; y=1.

METHOD OF VARIATION OF PARAMETERS TO FIND P.1.

Consider the linear equation of second order with constant co-efficients

2
%+a1%+a2y=§( ..(D
Let its C.F. be y = ¢,y, + c,y, so that y, and y, satisfy the equation
2
%+a1%+a2y20 ..(2)
Now, replacing c,, ¢, (regarded as parameters) by unknown functions u(x) and
v(x), let us assume that the P.I. of (1) is y = uy, + vy, ..(3)
Differentiating (3) w.r.t. x, we have y' =uy/ + vy, + u'y; + Uy, = uy, + vy,
e
assuming that u, v satisfy the equation u’y, + vy, =0 ..(5)
Differentiating (4) w.r.t. x, we have Y =uy! +u'y] vy, + Uy,
Substituting the values of y, y” and y” in (1), we get
(wy! +w'y] + vy, + Vyg) + a,(uy/ + vy,) + a,(uy, + vy,)) =X
or uly; + ay/ +ay) + vy, + ay, +ay,) + uy/ + vy, =X
or wy/ + vy, =X ...(6)

since y; and y, satisfy (2).

Linear Differential

Equations of Second and

Higher Order

NOTES
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Ordinary Differential 0
’ . Yo Y1 Yo yoX
Equations Solving (5) and (6), we get u’ = ‘ N
g ©) © 8 X v 1 Yo w
and v = no ‘+ Ve :_ylx
NOTES y{ X v vy W
N . .
where W= vyt is called the Wronskian of y,, y,.
1 Y2
Integrating, u=- j Yo X dx, v= J‘& dx
W W
Substituting in (3), the P.I. is known. Thus P.I. = -y, J‘y‘ZNX dx + ys J‘% dx.

Note 1. As the solution is obtained by varying the arbitrary constants c;, ¢, of the C.IF.,
the method is known as variation of parameters.

Note 2. Method of variation of parameters is to be used if instructed to do so.

SOLVED EXAMPLES

Example 24. Apply the method of variation of parameters to solve
d?y
= + 4y =4 sec® 2x.
dx?

Sol. Given equation in symbolic form is (D? + 4)y = 4 sec? 2x

Its AE. is D?+4=0sothat D==%2§

C.F.is Yy = ¢, €os 2x + ¢, sin 2x

Here, y, = cos 2v, y, =sin 2x and X =4 sec? 2x

Ny
y1’ yz,

W=

‘ cos 2x sin 2x

—2sin2x 2 cos 2x

X X
PL=-y, jy‘ZN dx + y, J‘% dx

. 2x .4 sec? 2
dx+sm2xjcos X 2sec xdx

_ sin 2x . 4 sec? 2x
= —cos 2x j 2

=—2cos2xjsechtaandx+2sin2xj sec 2x dx

=—2cos 2x . sec 2x

1
+ 2 sin 2x . 2 log (sec 2x + tan 2x)

= — 1+ sin 2x log (sec 2x + tan 2x)
Hence the C.S.is y =c, cos 2x + ¢, sin 2x — 1 + sin 2x log (sec 2x + tan 2x).

Example 25. Solve by the method of variation of parameters:

d2y dy e3x

- —6——+9y= )

dx? dx 4 x?
Sol. Given equation in symbolic form is

eSx
(D2 - 6D + 9)y = —;
X
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Its AE. is (D-32=0 = D=33

C.F.is y = (¢, +cp)e’
e3x
Here, y, = e*%, y, =xe®™ and X=—
x
RETEZ _ eSx xeSx _
¥y 3e3*  (3x + De*
X X
PL=-y, jy‘ZN dx + yy J‘% dx
3 e3x 3 e3x

xe™ .~ .
=¥ | —X dx+xe® | — X dx
e6x e6

1 1
= _ B J—dx + xe®* J_z dx
x x

1
=— e log x + xe® (— ;J =—(1+ log x) e~

Hence, C.S. is y= (¢, + cyx) e — (1 + log x) e
or y=1[; -1+ cx—log x] &
or y=1[(C, + cyx —log x) €3 | where C, =¢, — 1.

Example 26. Solve by the method of variation of parameters
2
4y ;} —y=e*gsin (e*) +cos (e™).
dx
Sol. Given equation in symbolic form is
(D% — 1)y = e* sin (e™®) + cos (e¥)
Its A.E. is DZ2—1=0 = D=+1
C.F.is y=ce'+ce”
Here, y, =¢*,y,=e¢* and X=e"sin (¢*) + cos (e™)
Y1 Y2 * o
¥y

_|e

e —e

X X
PL=-y, jy‘ZN dx + ys J‘% dx

re ¥ [e ™ sin(e™)+ cos (e™)]

dx

g J~ex [e™ sin (e_’;) + cos (e™)]

DO | =

exj e~ [e* sin (e™) + cos (e™)] dx

- % e_xj e le*sin (™) + cos (eM] dx ...(1)

Self-Instructional Material
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inary Differentia Now, j e [e* sin (e®) + cos (e™)] dx

Equations
- J (t sin t + cos ) dt, wheret=¢e™~
NOTES =—[t(=cos ) — j 1. (—cost)dtL+ sin t]
=—(—tcost+2sint)=e*cos (e*)—2sin (™)
Also, j e* [cos (e™) + e® sin (e™¥)] dx | Form j e[ fx)+f'(x)] dx = e“f(x)
=e*cos (e™)

From (1), we have

1 1
PI = 2 e [e™ cos (e™) — 2 sin (e™)] — 2 e™ . e‘cos (e™)

1 1
= 2 cos (e™) —e* sin (e™) — 2 cos (e™¥) = —e*sin (™)

Hence, C.S.isy = c,e* + c,e ™ — e sin (e™).
EXERCISE C
Solve by the method of variation of parameters:
2
1. d ‘;/ + y = cosec X.
dx
2 @) d_2y + 16 y = 32 sec 2x (1) d_2y + a?y = sec ax
' dx® dx®
@)y’ +y =sec?x () y” + 3y’ + 2y = sin (&%)
d?y %y
3. —5 +ty=tanux 4. —5 + 4y =tan 2x.
dxz y an dxz y an
2
5. (L) Y y =xsin x (1) (D2 + 1)y = cosec x cot x
6. ()y -2y +%y=e"t 5y LY 0 D _ e
. ()y' =2y Yy = an x. () Z =e¥ sin X.
2 4x
12
1. dy+6dy+9y—ie’3x' 8. LY _gd 16,120
dx? dx 3 dx? dx x
2
9. y 4&+4y—e2xsec2x. 10. y" -2y +y=e*log x.
dx? dx
2 2
11. —dv;v—y= z_ 12.d—‘¥+y=—_.
dx 1+¢” dx 1+sin x

Answers
y=c, cos x+ ¢, sin X —x cos X + sin x log sin x

2. (i) y=cycos 4x+ c, sin 4x + 8 cos 2x — 4 sin 4x log (sec 2x + tan 2x)

(1) y = ¢, cos ax + ¢, sin ax + _a2 cos ax log (cos ax) + PR sin ax

(iit) y = ¢, cos X + ¢, sin x — 1 + sin x log (sec x + tan x)

(V) y=c,e™ + cpe 2 + e 2 sin (e¥)
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3. y=c,cosx+c,sinx—cos xlog (sec x + tan x)
. 1
4. y=c,cos2x+c,sin 2x— Z cos 2x log (sec 2x + tan 2x)

_ . x . x?
5. (L)y—clcosx+c2s1nx+Zsmx—Tcosx

(i) y = ¢, cos X + ¢, sin x + cos x log sin x — x sin x
6. (1) y=e"(c, cos x+ c,sin x) — e" cos xlog (sec x + tan x)

.. 1 .
(i) y,=c, +c, e — 3 e* sin x

2
7. y= (cl + cox + i) e 8.y= (01 + cox + —2) et
2x x

1
9. y=(c, +c,x—logcos x) e 10. y = (¢, + c,x) e¥ + 1 x%e* (2 log x — 3)

11. y=ce+ce*—1—xe"+ (e*—e™) log (1+e9)
12. y=c,cosx+c,sinx+ sin xlog (1 + sin x) —x cos x— 1.

HOMOGENEOUS LINEAR EQUATIONS (Cauchy-Euler
Equations)

An equation of the form

n n-1 n-2
x”u+a1x’“1 d _31’ + 2477y _g’ 4o +an71xﬂ+any=X (@
dx" dx" dx" dx
where a’s are constants and X is a function of x, is called Cauchy’s homogeneous
linear equation.
Such equations can be reduced to linear differential equations with constant
co-efficients by the substitution x =¢* or z=Ilog x

n—
a,x

so that ﬂ:ﬂﬁzﬂl o xﬂ:QZDy,whereDzi
dx dz dx dz «x dx dz dz
d_zy_i(l ﬂ)__iﬂ 1 d% de
dx? dx\x dz 22 dz x dz? dx
1dy 1d% ( ﬁ_l)
__+__ . -_—
x2 dz  x? dz? dx x
2 2
or x2ﬂ:ﬂ—ﬂ=D2y—Dy=D(D—l)y

dx? dz? dz
3
Similarly, x3 % =DM - 1)(D — 2)y and so on.
X

Substituting these values in equation (1), we get a linear differential equation
with constant co-efficients, which can be solved by the methods already discussed.

Linear Differential
Equations of Second and
Higher Order

NOTES
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Ordinary Differential
Equations

NOTES

SOLVED EXAMPLES

d3
Example 27. Solve x°

dx3

1
+ 2 2Zy+2y—10(x+ )
X

Sol. Given equation is a Cauchy’s homogeneous linear equation.

Put x=¢e tle, z=logx
dy _ d2y
so that X =Dy, 2 =DMD -1
ax Yy ( )y
d3y d
3 _ =
X 777 =DD - 1)(D - 2)y, where D = T

Substituting these values in the given equation, it reduces to
DD — DD —2) + 2DD — 1) + 2]y = 10(c% + e )
or (D? —D? + 2)y = 10(e* + €7?)
which is a linear equation with constant co-efficients.
Its AE. isD3—D?+2=0 or D+ 1)D?-2D+2)=

2+./4-8
D=-1, = ——=-11%i

c
C.F.=ce*+e (c,cosz+c,sinz) = ? + x[c, cos (log x) + ¢, sin (log x)]

S S
D3 -D%+2

1 . 1 .
e’ + e
D? -D?* +2 D? -D? +2 J

1 1
- 10 —ez +z.—e_z
[ﬁ-4?+2 3D? - 2D ]

= 10[1ez +z.;e_z]
2 3(-1%-2-1)

2
2562+229*2=5x+;10gx

PI =10

(e+e?=10 (

2
Hence the C.S. isy = C—xl + x[c,, cos (log x) + ¢, sin (log x)] + dx + < log x.

d’y _dy
dx2 dx

Sol. Given equation is a Cauchy’s homogeneous linear equation.
Put x=¢* i.e.,, z=log xso that
dy

d%y d
= =Dy, 22 =2 =DD-1 here D = —
¥ Dy, T2 ( )y, where &

Substituting these values in the given equation, it reduces to
[DD -1 —D-3ly=2e%* or (D?-2D —3)y=2ze*
which is a linear equation with constant co-efficients.
Its AE. is D2—2D-3=0 or D-3)D+1)=
: =3,-1

Example 28. Solve x2 == — 3y =x%log x.

Ca
CF.=ce*+cpes=cx®+—
x
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1 Linear Differential

PlL=—"F—"(@*.2 Equations of Second and
D*-2D-3 Higher Order
— 2z 1 2= eZz 1 2
= 5 = —
D+2)"-2D+2)-3 D" +2D-3 NOTES
1 1 2D D?)|
=% 5 z=-—Ze¥|1-| 224+ — z
3l1 2D D 3 3 3
3 3

2
2

Hence the C.S.is  y=c¢x%+ L _ x—(log X+ —j‘
x 3 3

2

d d .
Example 29. Solve x2 —g TV A y =log x sin (log x).
dx dx
Sol. Given equation is a Cauchy’s homogeneous linear equation.
2
Put x=¢° 1e, z=logx sothat x dy _ Dy, x2 4y _ DD - 1)y
dx dx?

where D=—.
dz
Substituting these values in the given equation, it reduces to
[DOD-1)+D+1]ly=zsinz
or D2+ 1)y=zsinz
Its AE.is D+ 1=0 sothat D==+1i

C.F.=c¢, cos z+ ¢, sin z = ¢, cos (log x) + ¢, sin (log x)

Pl = ze'?

z sin z = Imaginary part of
D2 +1 g yp D11

. 1 . 1
=1LP.of e ——=—z=1LP.of e 55—z
D+°+1 D® +2iD
;D z=I‘P0fei2;,Dz
2iD(1+.) 2iD(1—lj
21 2

. -1 .
=I‘P.ofi, eizi(l_g) ZZI‘P.Ofi, eiZ%(1+%+ ...... Jz

=1.P. of e

21 D 2 21
=LP. Ofi. e i(Z+LJ =1.P. ofi, ez J(z +LJ dz
21 D 2 21 2

i (2 (1, 2
=1Pof——e*|=—+—z|=LP ofe=|-—22+=
2 2 2 4 4
2

=1.P. of (cos z + 1 sin 2) (—222+ZJ=—%COSZ+Z sin z

1 1
=-7 (log x)? cos (log x) + Z log x sin (log x)
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Ordinary Differential
Equations

NOTES

Hence the C.S. is
y = ¢, cos (log x) + ¢, sin (log x) — % dog x)? cos (log x) + % log x sin (log x).

2
Example 30. Solve: x? d_g + 4x dy + 2y =e~.
x dx

Sol. Given equation is a Cauchy’s homogeneous linear equation.

Putx=¢* i.e, z=logx sothat

dy d?y d
x——=Dy, x> —=<=DD-1 here D = —
¥ Y, X T2 ( )y, where s

Substituting these values in the given equation, it reduces to

DO -1 +4D +2ly=e or (D2+3D+2)y=e*

Its A E. is D2+3D+2=0 or OD+1DHDO+2)=0
=_1,-2
CF.=ce?+ce?=cul+cun?
Pl = 1 ¢ L e

3 e = e
D +3D+2 D+ 1DMD+2)

1 1 & 1 &7 1 &
= - e’ = e’ - e
D+1 D+2 D-(-1) -(-2)

D
=e7 jeez efdz—e % jeez .e%dz [ 1 X=e¥ J.X-e_“x dx}
:efzj.eez.ezdz_e—ZZJ.eez‘ez.ezdz |Put€zzt

=e7 j el di —e % j te' di
=e?. e —e?(t—1)e | Integrating by parts

=7 . eez _ 6—22(62 _ 1) eez

z

z
=(e?—e*+eP) e’ =% e
— x—2ex
SRS | DR g _ X \ae 2
Hence the C.S.isy=c,x ' +ex?+x %" or y=(c;x+c,+e")x?

LEGENDRE’S LINEAR DIFFERENTIAL EQUATION

An equation of the form

n n-1 d
(a+bx ndy +a1(a+bx)”*1—d ANENS +a71(a+bx)—y+a y=X ()
dx" dx" ! " dx "
where a/'s are constants and X is a function of «, is called Legendre’s linear equation.

Such equations can be reduced to linear differential equations with constant
co-efficients, by the substitution a + bx =¢* 1.e., z=Ilog (a + bx) so that
dy_dy de__b_dy

dx dz dx a+bx dz

dy _,dy _ _d
or (a+bx)a—bdz—bDy, whereD—dz

134 Self-Instructional Material



Linear Differential

d?y d b dy b? dy b d’y dz

ZJ_ = = == =4 . == Equations of Second and
dx?> dx\a+bx dz (a+bx)? dz a+bx dz? dx Higher Order
2 2 2 2
_ b day b dy b _ b d’y _dy NOTES
(@+bx)? dz a+bx dz? a+bx (a+bx)?|\dz? dz

2
or (@+ bx)? ‘;Tg = b2 D%y —Dy) = b2 DD — 1)y

3
Similarly, (a+ bx)® % — b2 DM — 1)D — 2)y.
X

Substituting these values in equation (1), we get a linear differential equation
with constant co-efficients, which can be solved by the methods already discussed.

SOLVED EXAMPLES

2
Example 31. Solve (3x + 2)? % +3(3x +2) Z—y — 36y =32+ 4y + 1.
X X

Sol. Given equation is a Legendre’s linear equation.

d,
Put 3x+2=¢ ie, z=logBx+2) sothat 3x+2) d_ilc = 3Dy,
2 d
Gr+ 229 =32 DD - 1)y, whereD=—.
dx? dz

Substituting these values in the given equation, it reduces to

r4 2 Z_
[32D(D—1)+3.3D—36]y:3(e 3—2J +4(e 2}”

3
or OD? —dyy=2e= -1 or D2_ay= 1 *-1)
3 3 27
which is a linear equation with constant co-efficients.
Its AE.is D2-4=0 .. D=+2

CF.=ce®+ce®=c, Bx+2)?+c¢,Bx+2)*

1 1 2z 1 1 2z 1 0z
PI=or (¥ - D= -
27?4 27{1)2_49 D?-4° ]

zi z.iezz—;eoz =i Ejezz alz+1
27 2D 0-4 2712 4

1 2 92z 1 1 2z 1
= +—[=—— +D=—- 2
27[ e } 108 (ze ) 108 [(Bx + 2)? log (Bx + 2) + 1]

Hence the C.S. is

1
y=c¢,Bx+2)?+c¢,Bx+2)%+ 108 [(Bx + 2)% log (Bx + 2) + 1].

Self-Instructional Material 135



Ordinary Differential
Equations

Solve:

NOTES

&
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11.

13.

15.

16.

17.

18.

19.

EXERCISE D

d* d
G) a2y + dxy’ + 2y = 0. (ii) 22 gg+9xd—i+25y=5o‘
dzy 1 d ay dy
=g - 2y=a2+ —. 3. x +2x — - 20 x+ 1)2
dx? Y x dx? dx y=¢ )
a3 y d? d’y dy . .
X2 —= —4x +6— Hint. Multiply throughout by x
dx3 PR [ ply g v ]
2
d” Y _ 2 dy L d%y dy
122 193 22 +xy=1. 2—5 —4x — + 6y =12
) x In T xy (i) x T2 i Y =X
d2 dy , 1
x2 — 4+ 3x — = .
@@ir) dx +ty= 127
The radlal displacement © in a rotating disc at a distance r from the axis is given by
5 d’u du 5 ) . "
r o2 +r e u+ kr’> =0, where kis a constant. Solve the equation under the conditions
r
u=0whenr=0, u=0when r=a.
d*y ly d’y _dy
2 —x 2 ry=1 8 —x—=+2y=xlog x.
22 2 Y " logx x> s 2 T2 =xlogx
2
dzy dy d%y dy
22 2 = 12y =x%log x. 10. 2——236——4 =x2+21
X dx2+2x T y = x° log x. X I dx y=x og X.
dzy dy . d? a’y 5 d? a’y dy
x%2 —=- - 3x — + 5y = sin (log x). 12. 23 + 3x + x == + 8y =65 cos (log x).
dax? dx & dax® dx2 dx g
dzy dy dzy dy sin (log x) + 1
x2—-8x—= +5y=x2sin (logx). 14. x> —5 —-3x — +y=logax ——=—"——.
e 2e Y (log ). 22 de 7Y
2
) d—’;} l & &(;gx. @i1) x%y” — 4xy’ + 8y = 4x> + 2 sin (log x)
dx® «x dx x
(L)(1+x)2 +(1+x)—+y 4 cos log (1 + x).
) (1+x)2dx +(1+x)—+y 2 sin [log (1 + x)]
d’y dy
@) (1 +x)2w+ (1+%) In +y=sin [2log (1 + x)]
(x+ 1)2 +( +1)— Qx+3) 2x+4)
d2
1+ 2x)°% —= 12 5 —60+ 2x) — + 16y =8(1 + 2x)?
d’y dy
x+3)2 —5 —2@2x+3) > — 12y =6x.
(u+ 3?5 - 2@u+3) 50— 12y =62
Answers
g) y=cual+en? (i) y=x*[c, cos (3 log x) + ¢, sin (3log x)] +
_ cg 1{ o 1 o L, o2 x 1
y—clx2+7+§(x —;Jlogx 3.y—clx5+c2x4—ﬂ—§—2—0
. 1
y=c, t e’ +egrt + 3% 5. 1)y =(c, + ¢, log ®)x+ cat+ ix log x

(@) y = ¢, 2 + e, —a? log

1 1
(111) y = — (c1 + ¢9 log x) + — log ad
x x 1



6. u=

%(az—rz) 7.y=(c; + c,log x)x + log x + 2

3
8. y=uxfc, cos (log x) + ¢, sin (log ¥)] +xlogx 9. y=ca’+ 02f4+g—8 log x (7 log x - 2)

x 1 3
10. =cxl+ext——-=logx+—
y=c, CoX 53 g 3

1
11.  y=x?%[c, cos (log x) + ¢, sin (log x)] + 3 [sin (log x) + cos (log x)]
12. y=cx 2+ «xfc, cos (J§ log x) + ¢, sin (J§ log x)] + 8 cos (log x) — sin (log x)

1
18. y=x?[c, cos (log x) + ¢, sin (log )] — Py x2log x cos (log x)

14. y= clx2+\/§ + c2x2—J§ + 6% {1ogx{5 sin (log x) + 6 cos (log x)}
x

+ 2 {27 sin (log x) + 191 cos (log x)} | + 1 1 + log x)
61 6x
15. () y=c, +c,logx+2 (ogx)?
@)y= x*"2 1 cos ﬁ log x |+ cg sin ﬁ log x |+ 223 + 5 cos (log x) + s sin (log x)
2 2 37 37
16. (i) y=c cos [log (1 +x)] + ¢, sin [log (1 + x)] + 2 log (1 + x) sin [log (1 + x)]
(i) y = c, cos [log (1 + x)] + ¢, sin [log (1 + x)] —log (1 + x) cos [log (1 + )]

(1) y = ¢, cos [log (1 + x)] + ¢, sin [log (1 + x)] - % sin [2 log (1 + x)]

17. y=c, +c,log (x+ 1)+ [log (x+ 1)]? + &% + 8x
18. y=(1+2x)7c, + ¢, log (1 +2x) + {log (1 + 2x)}7]

- 3 3 3
19. y=c,@Qx+3) 1+ c,@x+3)% - = ©@x+3) + e

LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER

The general form of linear equation of second order may be written as

d’y  dy

=2 4ip24+Qy=R

dx? dx W

where P, Q and R are the functions of x only. There is no general method of solving this
type of equations, but we will consider some particular cases in which the integral can

be found.

COMPLETE SOLUTION IN TERMS OF KNOWN INTEGRAL

If an integral included in the complementary function of a linear equation of
second order be known then the complete solution can be found. Let y = u be an integral
in the complementary function of the equation

d’y . dy
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Ordinary Differential dy
Equations Then put, y=uv so that — - = u Ut uny
dx
%y
and —5 = UV + 2uv, + uv,
NOTES dx

Putting in (1), we get

(uyv + 2u v, +uv,) + Puv +uv)) + Quu =R

or uvy, + (2u, + Puyv, + (u, + Pu; + Q=R
Since y = u is a solution of
d*y . dy
—+P—+ = ., + Pu, + , =
22 dr Qy=0 u, u, +Qu=0
2 p R
So, we have uv, + (2u, + Py, =R or Uyt o u+Pju = ”
. dp
Putting v, = p, so that v, = a0 e get
dp (2 J R
— 4+ | —.uq+ P = — 2
i B p=- 2

which is a linear equation in p.

ILF = ej (§.u1+P)dx :eJ‘ %du+Jde

2 _I.de

_ eZlogu+_[de =ule

R
We have pu?ejpdx = j (;uz eJP‘i’Cj dx + ¢,

p=ut e IPd J‘ (RueJde) di+cu? e P

l? = ﬂ
U dx
Integrating again, we have

U= J (u_2 e IPdx J Rue P& dx) dx + ¢, j (u‘2 e‘Jde) dx +c,
.. The complete solution of equation (1) is
y=uv=u J (u_Q eI Pdx J Rue! P dx) dx+cu j (u_2 e‘JP‘i’“) dx + cyu

The above solution contains only two arbitrary constants.

Pd _
or =u? e IPdx j (Ruej x) de+cu?e IPdx

TO FIND A PARTICULAR INTEGRAL OF

d? d
Y+ir % sar=o0
adx dx
y = e™is a solution
If y =emx
2
Then dy = me™m~ and d_%/ = mZem~
dx dx

138  Self-Instructional Material



(111) y = e™ is the solution of (1), if a? + Pa+ Q=0 or 1+

If y = e is a solution of (1), then
m?+Pm+Qe™=0 or m*+Pm+Q=0.
Deduction. () y = e*is a solution of (1),if 1+ P +Q =0.
(1) y = e 1is the solution of (1), if 1-P+Q=0
. Q

: =0,

Q|
Q

y = x™is a solution

or

If y=am
2

d
Y mam ! and —;; =m@m — 1)x™2
dx

dx
- If y = x™is a solution of (1), then m(m — Dx™ 2+ Pma™ 1+ Qx" =0
m@m — 1) + Pmx + Qx2=0.
Deduction. (7) y = x is the solution of (1), if P + Qx = 0.
(i1) y = x? is the solution of (1), if 2 + 2Px + Qx? = 0.

Then

Note. One integral belonging to the complementary function can be found by

inspection. For this following rules are observed :

(@) y=xisapart of C.R.,,if P+ Qx =0
(@) y=e*isapartof C.F.,if 1+ P+ Q=0 (i.e., sum of the co-efficients are zero)

GGii)y=e*isapartof C.F.,if1-P+Q=0

: . . P Q
(iv) y = e? is a part of C.F., if 1 + ;+a—2 =0

(V) y = «? is part of C.F., if 2 + 2Px + Qx% = 0.

SOLVED EXAMPLES

2
Example 32. Solve: x? % — 2x¢(1 +x) % + 21 +x)y =55
» x

Sol. The given equation can be written as

d? 1 d 1 1
S2-afbeea (el

dx? x x
1 1 1
where P+Qx=—-2(—+1|+2x|—<5+—|=0
x x° X
. y=x1s apart of C.F.
Putting y = vx so that
dy dv
— =—Xx+1Uv
dx dx "
d’y d*v v
_ = —— + 2 —_
and e o Ve get
d*v dv dp dv
— —-2—=1 = —2p=1 h =—
dx® dx o dx P WRETE D=
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Ordinary Differential which is a linear equation

Equations
LF. = e 2/d = go
—2x — —2x — 1 —Ix
pe?r = l.e*dx+c =—= +c
NOTES 2
— ﬂ — l +c e—2x
P=ge ~ "2 7@
. 1 C1 2
Integrating, we get v =— 9 x+ ) e+,

.. The complete solution is

1 c
y:l!x:_g x2 + Elxezx +C2x‘
d’y dy
Example 33. Solve: x? pran (x2 + 2x) Ix + (x + 2y =«
X

Sol. The given equation can be written as

d? 2\ d 1 2
S0 (2B

dx® x) dx \x
Here P=—(1+z), Q:l+£2 and R =xe*
x X x
Since P+ Qx=0
y =x1s a part of the C.F.
Putting y = vx, so that

dy dv d%y  d%v dv
—=—.x+ d — =—x+2—
dx dx vt an dx?  dx? v dx
d*v dv . dp , dv
’ - _ — =¥ _— = pX h -
We get 2 dx e or dx p=e*, wherep dr
which is a linear equation,
LF = e & = o

—X — —X X —
pe —j ev. etdetc, =x+c

_dv
p_dx

Integrating, we get v =uxe*—e"+ ¢+ ¢,

=uxe* +ce*

.. The complete solution is
— g — A 2pX d X
y=uvx=x%et —xe' tcxette, X,

: d* : . :
Example 34. Solve: sin x d_g = 2y given y = cot x is a solution.
X
Sol. Putting y = v cot «x, so that
dy dv ) 5
—— = — cot x — v cosec? x
dx dx
d’y d? dv
and —g = —12] cot x — 2 cosec? x — + 2v cosec? x cot x
dx dx dx
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in the given equation, we get Linear Differential
9 Equations of Second and
cot x sin? x ﬂ _9 ﬂ _ Higher Order
dx? dx
d’y 2 dv NOTES
or  — — =
dx sin x cos x dx
d, 2 d
or —pZ,—p, Wherepz—v
dx  sinxcosx dx
d 2 2 sec?
or —p = — dx = M dx
p sin x oS X tan x
Integrating, we get
log p = 2 log tan x + log ¢ p=c, tan® x
dv
or il tan? x = ¢,(sec? x — 1)
Integrating, v=c¢, (tanx —x) + ¢,
The complete solution is
y=vcotx=c (1—-xcotx) +c,cotux.
dy d?y
Example 35. Solve: x——-y=(x-1)|=——-x+1].
dx dx?
Sol. The given equation may be written as
2
d y _ x . ﬂ + L =x—-1
de?2 x-1 dx x-1
Here P+Qx=0
y=x1s apart of C.F.
. dy dv d’y d* dv
Putting y = vx, sothat — =—x+ v and —=——0x+2——
24 dx dx dx?  dx? dx
2 x 2 dv x-1
We have, —d;) +(——+—J—=
dx x-1 x) dx x
dp x 2 x-1 dv
= 4+ = + = = h = —
or dx ( x-1 xjp x e =gy
which is a linear equation.
[ x [ 2 [ [ 2
T e—J x_ldx+J ;dx :e—J [1+ — )dx+J ;dx
2
:e—x—log(x—l)+210gx: X e~
x-1
xze_x_J‘x—l x? - _J‘ gyt o = e
pT1 = r o1 ¢ dute =] werdete =—vet—ette
dv x-1 (x-1 cy(x-1De” 1 (1 1)
=— == - + =_ 1+ —5+c | =% |e
P x x2 x? 2 Ml x?
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Ordinary Differential 1

. 1
Equations Integrating, v=—x— < +c < e+,

The complete solution is

=x=—x2—-1+c,e+cx=ce+c,x—(1+x2).
NOTES y 1 =0 g% — ( )

Example 36. Solve:
d’y dy

(x sin x + cos x) s —XCOoSX Ix +y cos x = sin x (x sin x + cos x)°.
X X

Sol. The given equation may be written as

d?y X COS X dy + cos x

5 - == - y = sin x(x sin X + CoS X)
dx xsinx+cosx dx xsinx+cosx

Here P+Qx=0 .. y=xils apart of C.F.
Putting y = vx the equation reduces to

d?v N 2 X COS X dv _ sin x (x sin x + cos x)
dx? x xsinx+cosx) dx x
dp 2 X COS X sin x )
or — | ——— p= (x sin x + cos x)
dx x xsin x+cos x X
which is a linear equation.
J‘ 2 X COS X 9
IF =e x xsin x+cosx _eZIng—log(xsinx+cosx): X
o (x sin x + cos x)
X2
p. ﬁ :j xsinxdx+c, =—xcosx+sinx+c
X sin x + cos x

dv 1 ) . c .
p=—F7="% (—xcosx+smx)(xsmx+cosx)+—; (x sin x + cos x)
dx «x x
dy ) 1 ) 1.
— - =—sSInXcosx——Cos2x+ "3 sinXxcosx+c¢, | SMX+—COSX
dx x x x x
Integrating,

) 1 1 1. 1
p:—cos2x—j —cos2xdx+J — Siandx+Clj(—Slnx+—ZCOSXJ dx
D) X 2x X X

1 5 1 cq
=5 Cos? X — o sin 2x —— cos x + ¢,
2 2x X

.. The complete solution is

x 1
=1y = — 2 — 1 —
y=uvx 9 cos® x 2 sin 2x — ¢, €OS X + ¢, X.

d’ d

Example 37. Solve: (1 -x2) —;’ +r —y=x(1-x2)>%2
dx dx

Sol. The given equation can be written as

d%y x dv 1
I av _ = (1 — x2)1/2
dx?  1-x2dx 1-x2 y=x )
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Here P+Qx=0. .. y=x1s a part of C.F.
Putting y = vx, the equation reduces to

d*v +( x +2J dv _ x(1-x*)"?

dx? 1— x2 dx x

dp x dv
or dx ( +—Jp—w/1 x2 , where p = .

1—x2

which is a linear equation.

J LA PN 2 2
IF =e 1-x% «x :e—%log(l—x)+210gx: X

3
x
p‘—ZJ‘x2dx+c ="_+c¢
1/1—x2 '
dv 1 | c1 |
p:d—zgx 1- X +x1 1- x

X
1 = 1
:gx 1—x2+cl(1—x2)1/2.x—2
1 ; = 1 1 2\3/2 1 2\1/2
ntegrating, l‘——9( —x9)"+ ¢, (1 —-x%) = —Clj
1 s G 2\1/2 -1
:—5(1—36) —y(l—x) —c;sintx+c,

.. The complete solution is

y—lx———x(l A)V2—¢ {xsinta+ J1-x2}+ ey

d* d .
Example 38. Solve —;} —col x @ (1 —-cotx)y=e*sinx.
dx dx

Sol. From the above equation, we have P+ Q +1=0
y=e¢"1s a part of C.F.

dy dv
-~ Putti =ve*sothat — = — e*+ 1. €*
utting y = ve* so tha 2 e Tue
d2 d% dv
and 2€x+2—e’“+vex
dx? dx dx
2 dv
We have, d—+(2— cot x)——smx
dx? dx
d, . dv
or P . (2 —cot x) p = sin x, where p = —
dx dx
which is linear equation.
. er
ILF. = eJ(Z—cotx)dx :er—logsmx =—
sin x
er _J. er ‘ s _1 e,
psinx_ sin x sin X dx Cl—ze ¢,

Linear Differential

Equations of Second and

Higher Order

NOTES
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Ordinary Differential dv 1

Equations P sin x + ¢,e?* sin x
Integratin L cos X + 9 e (—2sinx—cosx)+c
? ng, v=—— X+ — e (—2snx— :
NOTES gratimg 2 5 2
The complete solution is
. 1 Cq ) . ,
y=ve-’°=—§ e cos x—g e (2sin x + cos x) + ¢, €.
d?y dy ,
Example 39. Solve: (x+2)—5 —(2x+5)——+2y=(x+1)e"
dx dx
Sol. The above given equation may be written as
2 2 x+1
dy_2x+5.ﬂ+ Ly o
de x+2 dx x+2 x+2
P Q
—+ 5 +1=
Here, 5 T2 1=0

y = e% is a solution of this equation.
Putting y = ve?:, the equation reduces to
d%
dx?
d’v 2043 dv _ x+1
dx?  x+2 dx x+2
@ N 2x +3 x+1

p= e~ wherepzﬂ
dx x+2 x+2 dx

(x+2) +(2x+8)ﬂ=(x+1)e*x
dx

—X

or

which is a linear equation.

[ 2x+3 [ 1
2 2x
J dx J[ )dx_er—log(x+2): e

— x+2 _ _x+2
ILF.=e =e 12
ezx —J‘ x—+1 xd +
p.x+2— (x+2)2€ x + ¢,
x
:j 1 1 sre dxte = ¢ +c
x+2 (x+2) x+ 2

dv , o
pzaze*x+cle2 (x+ 2).

. ,— x_ 1, 9 1., , 9
Integrating, v=—et—g5c e (x+ 2) — g0+,
— —X 1 —2x
=—e —zc¢ Zx+He*r+c,
.. The complete solution is
— v — _x 1 2
y=ve=—e"— zc; (2x+5) + et

2
Example 40. Solve: «x % —(2x+1) Z—y +(x+ Dy=(x>+x-1e*.
X X

Sol. The given equation can be written as

d?y 1) dy 1 ( 1) .
— |2+ =+ |1+ |y=|x+1-—|e*
dx? ( +x) dx ( +x)y ¥ x ¢
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Here 1+ P+ Q=0 .. y=e¢"1is apart of C.F.

Linear Differential

. . . Equations of Second and
Putting y = ve* the equation reduces to Higher Order
2
d™v _lﬂ:(_x-{-l_l) %3
dx? x dx x NOTES
1
or @—lp:(x+1——)ex, wherepz—v
dx «x x
which is a linear equation.
(1
_ - 2B —logx _
ILF.=e =e =—
X
1 1
D. l:j (x+1——) . —dx+k
x x x

:j (ex +lex
x

ex
ZexJ dc+k=e+—+F

x x
dv , ,
p= = xe* + e* + kx,
dx
Int ti )= e’C+ﬁ 2 + = xe“+ ¢, x% + h _ K
ntegrating, U = Xi 9 X C2 or U=Xxe clx 02, whnere Cl = 5
The complete solution is
y = ve* = xe?* + ¢, x%* + che”.
EXERCISE E
Solve the following differential equations:
d? d?y
1. 22 (3+x)—+3y 0 2. 022 (2 - 1) - 1y=0
dx? dx?
2 1
3 xzd—‘)z} +xd—y —y=0, given that y =x+ — 1is a solution.
dx dx x
@E+ 2y = O+ 4y + (7T+ 30y =0
5. x(xcos x—2sin x)y” + (x* + 2)sin x . ¥’ — 2(x sin x + cos x)y =0
d? d?
6. T2 —(x +2)— +2y=22 7. 222 2%« +1)— +(x+2)y = (x—2)et.
dx? dx dx?
d? d 2
8. Ez_(l+x)§ +xy=x 9. (x+1)dy 2(“3)% +(x+5)=e
10. (x—22)y' —(1-2x)y + (1 -3x+x2)y=(1-x)3
Answers
1. y=—c,(x®+ 3% +6x+6) + c,e” 2. y = (¢, log x + ¢,)e*

’ 1
3. y= 2+Cz[x+xj

_ : 2
5. y=c;sin X+ c,x

1 2 1 3 x
7. y= —=x"e" + xe*+ gclxe + ¢t

9. y=- ixex + %clex(x +1° + c e

4. y = ¢, (2x + 3)e* + c,ef

6. y=c,(xF+2x+2) +cpet— a3
19

—x+
_ x 2
8. y=cpe J.e dx +cet+1

2 -x

1
10. y= Eclx N
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Ordinary Differential
Equations

NOTES

REMOVAL OF THE FIRST DERIVATIVE
(Ruduction to Normal Form)

If the part of the complementary function is not obvious by inspection, it is
sometimes useful to reduce the given equation into the form in which the term
containing the first derivative is absent. For this we will change the dependent
variable in the equation.

d? dy
_dx%’ +PZ=Qy R (1)
By putting y = uv, where u is some function of x, so that
dy dv du
——=u——+ 0
dx dx dx
d?y d%v du dv d%u
— U +2—  —+—5 U
and dx> dac2 dx drx  dx®
.. Equation (1) reduces to
d*v du) dv d%u du
 Z ~ +|Pu+2—=|—+|—5+P—+ )=
u I (u+ dx) dr (dxz dx Qu|v=R
2
dzv P+2%J@+ EM_{_E%_{_ \_E
or 2 +( wdx)de \udx?® udx Qv-= u - (2)
2 d
Let us choose u such that P+ — —u=0
u dx
du P du
or a——gu or 7——§de
-1 Pdx
K u=-e 2!
.. From equation (2), we have
2 7 1 P dx
d v + 1(_Ed_P_£ﬂJ+£ﬂ+Q l‘:Rezj
dx? u\ 2dx 2dx) udx ]
d*v _ld_P_E(_B J+B(_B )+ | alre
or dac’ +[ 2de 2ul 2%) Ul 2" Q_l‘_Re
d%v 1dP 1 _,] Lipa
e T 2
or dx2+[ 2 de 4 _l R.e
v
or W +Xv=Y ..(3)
1
where X=Q_ L% _ L p2 14 y=Rez/?P%
2dx 4

The equation (3), may easily be integrated. Equation (3) is said to be the normal
form of the equation (1).

Note. Remember equation (3), and the values of u, X and Y.
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SOLVED EXAMPLES

d?y 1 dy 1 1 6\
Example 41. Solve: W + x1/3 a‘i‘ 4x—2/3_6x—4/3_x—2 y= 0.
1 1 6
SOI.I{GI‘E}P:.*M)’,Q:436—2/3—636—4/3—36—2 and R=0
On putting y = uv, the given equation reduces to the normal form
2
% +Xv=Y
x
—lJ.de —ljxfmdx —le/g
where u= e 2 =e 2 =e 3
1dP 1
X = =% 2o
Q 2 dx 4
1 1 6 1 1 _ys 1
422 623 2 5( 3" avT T
1) Pdx
and Y = Re? =0
.. The normal form of the given equation is
2 2
d—Z—%l*ZO or x2ﬂ—6v=0
dx x dx
which is a homogeneous linear equation.
. d.
Putting x = ¢, so that 2 =k
dz
dv_do dx _ dv
dz dx dz " dx
d_d
x  dz

d
Let D stands for — , then

dz
d ( dv)_ ,d% _ dv
r— | xZ =2 2+ 2
xdx(xde xdxz xdx
d?v d dv
or x2W=(xa—l)xa=(D—l)Dl‘
From equation (1), we get [D—-1) D -6]v =20
or D?-D-6)v=0
Now, A.E. is mi—m-6=0 or m=3, -2

Solution of (2) is v=ce e e =t e a?

The solution of the given equation is
( E) 2/3
y=uv=e" * (X% + cyx?).

2 d
Example 42. Solve: x? % — 2x? +x) d—y + (% + 20+ 2y =0.
X X

Sol. The given equation can be written as

d?y ( 1) dy ( 2 2)
— 2|1+ | —+|1+=+=|y=0
dx? x ) dx X x2 Y

(1)

(2

Linear Differential
Equations of Second and
Higher Order

NOTES
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Ordinary Differential 1 2 9
Equations HeI‘eP:—2(1+—),Q=1+—+—2 and R=0
x x x
. . d?v
Putting y = uv, the normal form is

NOTES da’

1
Pd J(1+7)dx
J Pdx = x :ex+logx

+Xv+Y

_1 .
where u=e ? = xe~

X=Q-—-Z —proq+ 242 = Sy
Q 2 dx 4 x x2 2 x%2 4

JdeZO

1dP 1 22121(1)2

and Y= Re§1

2
.. The normal form is d—;} =0
dx

Integrating, v=cxtoc,
. The solution of the given equation is y = uv = xe* (c,x + ¢,).

2
Example 43. Solve ay 2tan x dy + 5y = e* sec «x.
dx? dx

Sol. Here P=—-2tan x, Q =5 and R = e*sec x
Putting y = uv is the given equation, the equation reduces to

d*v - 1]Pdx
s +Xv =Y, whereu=-¢e ?
X

log sec x

:ejtanxdx:e =sec x

1 1
=5+ = 2x—— an? x =
5 22860x .4tan“*x=6

Y =Re? /P = o

2
The reduced equation is

5t 6v =e"
dx

where C.F. =¢, cos \/6x + ¢, sin /6 x

1 e*

X =

and PI = D2—+6 e 7

x
. e
U=c, COS /B X+ ¢, Sin 6x+7
.. The solution of the given equation is

. 1
y=uv =secx(c1 cos\/€x+cz s1nx/€x+?ex) )

2
Example 44. Solve d—;’ —dx dy . (4x? - 3)y = e”
dx dx

Sol. Here P=—4x, Q=4x* -3, R = e

Putting y = uv, the normal form is,

2
d_;) +Xv =Y, where u= e #IPd _
dx
1dP 1 1 1
—qQo - L P c4 3o A (16Y) =1
X=Q-g oy Pi= 43— 4 - (16)

_1
and Y =Re PP _y
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. d% _
The normal form is — —U= 1
dx
where C.F.=ce*+ce™
1

d PI = 1=—1-DH»H1 1=-1
an DE_1 ( )

o v=cet et —1
.. The solution of the given equation is

2
y=uv=e" (ce*+ce™—1).

dy

2
Example 45. Solve d—;} —4dx +(d2-1)y=— 3% sin 2.
dx d

X
Sol. Here P=—4x, Q=4x*-1and R=— 3e* gin 2
: . d?
Putting y = uv, the equation reduces to d_;) +Xv=Y
X

where w=e PP _
1dP 1 1 1
—0_ =Y o4 1= 2 _
X=Q > dr 4P 4 — 1 2(4) 416x 1
1
YZReszdx =— 3 sin 2x.
2
The reduced equation is I +v=-3sin 2x
X
whose C.F.=¢; cosx+c,sinx
1 . -3 . .
and Pl =— (=3 sin 2x) = —5—— sin 2x =sin 2x
D +1 -2°+1

R U=, COS X+ ¢, sin x + sin 2x
.. The solution of the given equation is

2
— — X . .
y=uv=e" (c;cosx+c,sinx+sin 2x).

2y 2 d
Example 46. Solve % - d—z + (1 + x%) y = xe”.

2 2
Sol.HereP:—;,Q=1+x—2andRer’“

d?v

Putting ¥ = uv, the normal form is 722 +Xv=Y
x

1 Pdx :ej]/xdx log x

where u=-e =e =x

1dP 1 1| Pdx
= _—_———— 2 = = e2
X=Q > dx 4P landY=R

= yet o~ d¥x = yor plogx — o
The normal form of the given equation is

d?v ) .
F +v=e"whose C.F.=¢, cos x + ¢, sin x
x

1 x
and Pl =— exze—
D°+1 2

Linear Differential

Equations of Second and

Higher Order

NOTES
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Ordinary Differential
Equations

NOTES
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and

and
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where u=e 2

Putting x = e*, we get

)y = 1 1 ,x
¢ ClcOSx+C2slnx+2e

.. The solution of the given equation is

o . 1 0
Yy =uv =x(c, cos x + ¢, sin x + 5 eY).
Example 47. Solve

d2y

dx?

Sol. The given equation can be written as
d’y 2 dy, 2 1
dx®> xlogx dx

d
x2 (log x)? —2xlog x d—z +[2+1log x — 2(log x)?] y = (log x)° x2.

+ p—
x? (log x)? x%logx «x
2 2 1 2
Here, P=- ,Q=
x log x

R =log x

2 1,2
— |y=logx

x? (log x)?  x%logx - x?

Putting y = uv, the given equation is transformed to
2
d_‘; +Xv=Y
dx

1
-2 Pdx J x log x dx (log log x)
=e =e =log x

_ 2 1 2

_12(10gx+1)_1 4
x> 2 x2(log x)?

2
2

a2 (logx)?  x2logx 4 (xlog x)? «x

Y:Re%Jde -1

The transformed equation is
d?v 2
dx?  «x

2
5, dv
2

2

X 20=x

dx
DO-1)-2lv=e* or
AE ism?—m—-2=0,m=2,-1

_ 2z —z — 2 —1
CF.= ce®+ce=cx%+cx

(D2 —D —2) v = e

PI 1 2z 1 e22
d=—"——€6&“=""———"—""—"=
D?-D-2 (D-2D+1)
1 1 9 1 1
== 2 D=—e* -
3 D—2(e ) 3° D+2-2
1 1 1 1
=2 | = .1]== 222 == 42100 ;
36 (D J 328 316 og X

The solution of equation (1) is

1
J— 42 14 T2
v=cx e x !t + 3¢ log x

(1)



The solution of the given equation is

1
vy =uv = (log x) (clx2+c2x*1)+§(x log x)2.
d®y dy
— + % — + (2 + Dy =1+ 3x.
22 X dx (x )y =x X

Sol. Here P=2x, Q =x2+ 1 and R =«% + 3x

Example 48. Solve

2
Putting y = uv, the equation is transformed to % +Xv =y,
X

1
-=| Pdx
where u=e 2 e 2
1dP 1
X=Q-= ——-—P2=0

Q 2 dx 4

_L Pdx 2/3

and Y =Re 2 = (° + 3x) e”

2
.. The transformed equation is, % = (x® + 3x) exm
x

dv
Integrating, D J X3 e /2 dy+ 3 j xe* /2 dx + ¢,

= J x2 (ve®'2) dx + 3e572 4 ¢

=x2e %72 _ 2 j xe® 2 di + 3¢5 12 + ¢,

= x2ex2/2 _ zexz/z T 3ex2/2 te, =2+ 1)exz/2 e,
Integrating again = j a2 e 2 dy + j e 2 dy + ¢, x+e,

2 2 2
ZJ. x (xe* /z)dx+j e* /2 dx + c,x + ¢, = xe® /2+clx+c2

.. The solution of the given equation is

y=uv=x+(c,x+ 02)e’“2/2

d? 1 dy 1
Example49.Solve#—ﬁa+4x—2(*8+«/;+x)y:0‘
Sol. Here, P=—i Q:%(—8+«/;+x)andR=O

«/;’ 4x

Putting y = uv, the given equation is transformed to

2
_d‘;+xl»=Y
dx
101
Lpae -5
where u=e J =e 2J * :e‘/;
1dP 1 2
—0_- % _“pa__ =2
X=Q 2 dx 4 x2
7J‘de
Y=Re?2 =0

Linear Differential
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Ordinary Differential .. The transformed equation is
Equations

2 2
d—g—%l*ZO or x2d—12]—2v=
dx X dx
NOTES which is a homogeneous linear equation.
{ODO-1)-2v=0
D?-D-2)v=0
AR is m>—m—-2=0
m=2,-1
. v=c e e et = et oyl
. The solution of the given equation is
y=uv = eVE (% + cxh).
d’ d 1.2
Example 50. Solve —;} +oa Py (x2+5)y =xe %
dx dx
2
Sol. Here P=2x, Q=x%+5, R= xe 3%
Putting y = uv, the given equation is transformed to
d?v o
— Xv=Y
dx
where u=e PP _pmpled | oat
1dP 1
X=Q-——-—-P?=x?+5-1-x?=14
Q 2 dx 4 v v
and Y =Re ! P¥ =
The transformed equation is
2
% 12) +t4v=x
dx
AE. is m2+4=0 .. m=%2i
C.F.=c¢, cos (2x + ¢,)
1 1 p2)"
x
Pl=——x==|1+—| x=-—
D®+4° 4 ( 1 J 4
. The solution is y=uv=e "2 [¢, cos 2x +¢,) + + «].
EXERCISE F
Solve the following differential equations:
d’y 2 (dy 2 2 _ . d’y dy _
1. w—;(a +|a +x_2 y=0 2.(x3—2x2)w+2x2£—12(x—2)y—0
2 2y 2 4
3. Y _gtanx @ v 5y=0 PR A
2 dx dx® x dx
d?y dy d( dy dy
5. —5 —2bx == +b%Zy=0 6. x—|x———-y|-2x—= +2y+x%y=0
daxc? Y dx *y e Yax Y dx yrey
2
7. (zc(coszxjij +ycos2x=0 8. (3:2; +yJ cot x + 2(3‘;} +y tanxj =sec x
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2
X

9~

7( 2x)
x4+ 2x dy+2xd7 +(X‘2 8)y=x€ 2
dx

d? a7y dy
9. —2 Y 219y = e? 10.
I ax T C )y Il
11, 2%y —2xQ +x)y + 20 +x)y=x>(x>0) 12.y" — (2 cot )y + (1 + 2 cot2x)y =0

13. 7 —dxy + (422 — 1)y = e¥*(5 — 3 cos 2x)

Answers
1. y=xc, cos (ax + ¢, 2. y=(cxt + c,x)/(x—2)
. 1

3. y=sec x(c, cos ,/6x t ¢, sin J6x) 4.y= = c, cos (nx+c,)

x

2

5. y=¢; e2 cos (\/_x+02) 6. y = x(c, cos x + c, sin x)

1, .
7. y=sec x(cl €os v/2x + ¢y, sin 2x) 8.y= E(sm x —x cosx) + (c,x+ c,)cos X

Ea ) 1 2t = s 1( o 2
9. y:ez(clcos 3x + ¢, sin 3x)+Ze2 10. y=e 2 cle"+cze""—9(x +9j
2
11, y=(c, ™+ cy)x— 5 12. y = (¢, + c,x) sin x

13. y= (3’“2(01 cos X + ¢, sin x + 5 + cos 2x)

TRANSFORMATION OF THE EQUATION BY CHANGING
THE INDEPENDENT VARIABLE

Sometimes the equation is transformed to an integrable form by changing the
independent variable.

Let the equation be

2
d—+de+Q - R (1)
dx?
Let the independent variable be changed from x to z, where z is a function of x.
oy e Ly d () d(d b
dx dz dx a dx? dx dx) dx\dz dx
_d’y ( dz J dy d2
Bl dx dx
Substituting in equation (1), we have
2 .2 2
(EEJ-Q%A—EL§+PdZ — +Qy=
dx) dz dx dx
2
dy
or Z—2+P +Quy =R, (2
d?z dz
C2ip®= R
where P, = dx”  dx Q= L and =

dz\? dz \? L dz)?
@) (&) ()
P,, Q,, R, are functions of x but may be expressed as functions of z by the given
relation between z and x.

Linear Differential
Equations of Second and
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Ordinary Differential d .
Equations We choose z to make the co-efficient of d_ilc zero, i.e., P, =0
d?z
. d?z dz . dx?®
NOTES i.e., W +Pa =0 or E =—P
dx
Integrating, log - =- Jde or dz =P
d dx
Then the equation (2) is reduced to
d2
d§+Qﬁ R,

which can be solved easily provided @, comes out to be a constant or a constant multi-
plied by iz .
z
Again, if we choose z such that
Q 5~ = a? (constant)
dz
()
i dz dz
re., a (dx) =Q or aa—\/@
az = J @ dx

Then equation (2) is reduced to
2
dy .
dz? L dz
which can be solved easily provided P, comes out to be a constant.

Q, =

Note. It is advised to remember the equation (2) and the values of P,,Q, and R,.

SOLVED EXAMPLES
2 2
y 2d
Example 51. Solve ] + ;d_z Z—4 y=0

. . . . a
Changing the independent variable from x to z by the relation z = S ve get

2
d
%?+P y+QJ R,
2 2 2
P
where p= & x-% =0

()
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R
Q; = Q 5 and R, = 7 =0
& B
dx dx
%y
.. The transformed equation is 12 +y=0
z
. a .a
y=c¢,co8z+c,sinz=c cos; +c2sm; )
2
Example 52. Solve: x d—;} _dy + 4%y = x°.
dx dx
Sol. The given equation can be written as
d?y 1 dy
— _ — — 4+ 4 24 — A 4
dx®  x de YT
2
d
Choosing z, such that (Zazc) =Q=4x2 or d—i =2x
Now changing the independent variable from x to z by the relation z
d’y dy
PERRLRA A
2
M+PE 2+ (—IJZx
1 dz)Z (zx)z
dx
Q Q d R R x* x? 1
(&) o
dx dx
The given equation is transformed to
d?y 1
— Y 4= =
dz* YT s
CF.=c¢,cosz+¢,sinz
1 1 1
= — —_— = — —+ 2)-1 — l _ 2 + 4
P.I1 4.D2+12 4(1 D3 z=47(1-D*+D

_ . 1
y=c cosztc,sinz+ gz

y = ¢, cos ¥ + ¢, sin 1 + 1 ¥
d* d
Example 53. Solve : d—g + cot x d—z + 4y cosec® x = 0.
X

Sol. Choosing z, such that

dz\? 5
— | =4 cosec? x, so that
dx

dz

X
— =2 : =2log tan — .
dx cosec X or = 0g tan 9

=x?, we get

Linear Differential

Equations of Second and

Higher Order

NOTES

z = x2
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Now changing the independent variable from x to z by the relation

Ordinary Differential
Equations x
z=210gtan§,weget
d*y dy
NOTES —r +P, - +Qu=R,
d?z . dz
dx? dx 2 cosec x cot x + 2 cot x cosec x
where P, =-—""—"—7F— =— 5 =0
(d) (2 cosec x)
dx
Q R
= =1 and R, = =
B T
dx dx
The given equation is transformed to
2
Yy
— + — 0
dz? Y
y=c,cosz+c,sinz or y =k, cos (z+ky)
or y =k, cos (2logtan%x+k2)‘
d’ d
Example 54. Solve: (1 +x2)? —;’ + 2x(1 + 19 A 4y =0.
dx dx
Sol. The given equation can be written as
2
2 d
¢ ;; + xz L 5 y=0
dx 1+x% dx  (1+x)
Choosing z, such that
(dzf P S
dx 1+ x2 N dx  1+x2
or z=2tan"' x
Changing the independent variable from x to z by the relation z = 2 tan™' x,
we get
d*y dy
@ T T
dzz dz - 4x Zx 2
dx® i dx _ (1-x%)? ’ 1+x2  1+4«2
where P =2 S = 7} =0
dz
dx (1+x2)?
Q R
= =1 and Ri=——=0
Ql @ 2 1 (dz)z
dx dx
%y
The transformed equation is T2 +y=0
X
y=c¢,C082+c,sinz
or ¥y =c¢, cos (2 tan"! x) + ¢, sin (2 tan"! x)
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x 2% Linear Differential
=c, cos (tan_l B J + ¢y sin (tan_l 5 J Equations of Second and
1-x 1-x Higher Order
_. 1- 2 te 2x
- 2
D14 a2 1+x? NOTES

or y(1+x%) =¢, (1 -2+ 2c,x.

d?y dy 1
) 6 — <2 5 2 2 = —F=
Example 55. Solve x o + 3x dr + a®y pe

Sol. The given equation can be written as

d’y 3 dy a* 1
dx?2  x dx x5 Y x

8

. dz\? a?
Choosing z, such that =Q=—

—_— = — or = a
dx x* 2x2

Changing the independent variable from x to z by the relation z =— 2% we get
x
d’ dy
— 2, 1 T =R,

d?z dz

2
where P. = dx—dx 0, Ql = Q =1

1 (dz)z =
dx

(&)

R 1 2z
and R, = s =33~ "3
dz a“x a
()
*. The transformed equation is
d* 2 :
Eg +y=—a—§ whose C.F. =¢, cos z+ ¢, sin z
=c, cos (—L)+c sin(—i)
! 22 2 22
=c COSL +c sini
1 92 2 92
1 2z 2
SR T B
D?2+1\ af a® ( )
2 2z 1
=—— (1-D?+D*. . )z=——F=
a3 ( ) a3 a2x2
= ¢, Ccos a4 +c sinL+;
y=a¢ o 2 9% ol
Example 56. Solve: cos x M + sin x == dy ~ 2y cos® x = 2 cos°® x.
dx? dx
Sol. The given equation can be written as
d2y

d
—+tan1c—y (2 cos?x)y=2cos®x
dx? dx
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Ordinary Differential dz 2
Equations Choosing z such that (d] =cos? x
X
dz .
——=cosx or z=sinx
NOTES . . dx. | .
Changing the independent variable from x to z by the relation z = sin x, we have
d? d’y d
7 — Tt P — + Qly R
d?z dz
x2+de —sin x + tan x cos x 1
where P, = = =0, Q, = =_9

( g (&)
dx

(dz) =2cos?x=2(1-2%

dx

The transformed equation is

and R, =

d2y
7 - 2y=21-2)
whose CF. = cleﬁz + ¢y e V22
p2)"
and PL=—r .2(1—22)=—(1—7] (1 - 22)
D? D*
:_(1+7+T ..... J (1_22)
=-(1-2)+5 (=7
y:cl \/72+C e 2z +22
Required solution is = cleﬁsm + ¢y e V2sinT 4 2y

d? 1) d
Example 57. Solve: —g 1= 24 4xZe 2y = 4(x% + x°) e73%,
dx x) dx

Sol. Choosing z, such that

d
(z) = 4y2 o2 d—i =2xe® or z=—-2(x+1) e~
Changing the independent variable from x to z by the relation,

x=-2(x+ 1) e* we have

d? dy
7 %’ + P, +Qy =R,
2
73 2 +P% 2(1-x) e +(1—1)2xe_x
X X
where p, = x( ) )2 = 1l o
dx

Q, = =1 and R, = =1l+x)e*=—3z

dz\> 2
(%)

(&)
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. Transformed equation is Linear Differential
Equations of Second and

2y N 1 Higher Order
hadig =_ =z
a2 2

whose C.F.=¢, cos z + ¢, sinz NOTES
and PI 2#(——ZJ=——(1+D2)12
D%+

=—2(1-D?+D'-..)z=—1z
y=c cosz+c,sinz— 4z
y=c;cos{2(x+ e} —c,sin 2(x+ De j+(x+ 1) e
2
Example 58. Solve: x dy _dy x3y = 8x% sin x°.

dx?® dx

Sol. The given equation can be written as

d?y 1 dy
22X =2 4y = 82 sin a2
2l % dx x4y = 8x% sin x

Choosing z, such that

2
(Zz) = 4x? or % =2 z = a2
X

Changing the independent variable from x to z by the relation z = x%, we get

2
ZT%}+P1%
d?z dz
L dz\’ _O’Ql_?__l
(o) (2]
R

Ri=—F—"=
L (dzldx)*
The transformed equation is

+Quy =R,

where P

and =2sin ¥ =2sin 2

d*yldz* —y =2sin z
whose CF.=cee+cye”

1

and P.I @sinz)=T12 {sinz=—sinz

B 1

- D2-1
y=ce+ce’—sinz

The solution of the given equation is

x2

2 .
y=ce* +ce”® —sina?

EXERCISE G

Soluve the following differential equations:
d> d
1. xﬁ+(4x2—1)d—i'+4x3y=2x3 2. 1

d7y dy
w+2xga+n2y=0
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Ordinary Differential a2 y d d2 dy
Equations 3. w—cotxa—ysin%CZO 4.W+tanxa+ycos2x=()
d? d
5. (1+ x)2d—3;+(1 +x)d—y +y =4 cos [log(l + )]
X
NOTES .,
6. d—jz/ +(3sin x — cotx)d—y + 2y sin? x = €% sin?x
dx
d? d
7. JAZ} - cotxay — y sin?x = cos x — cos®x
2
8. Lz + (tan x — 3 cos x)dl + 2y cos? x = cos? x
dx dx
9. 3" — (1 + ey + ey = g2+ e 10. y” — (8e2* + 2)y + 4etty = ¢bx
Answers
2 1
1. yzex(clx2+c)+— 2.y=ccos(n+a‘x}
2 x

3. y=ce ¥ +cge

¥y =c, cos log(1l + x) + cysin log(1 + x) + 2 log(1 + x) sin log(1 + x)

cos x 4.y =c, sin (sin x + ¢,)

METHOD OF VARIATION OF PARAMETERS

Here we shall explain the method of finding the complete primitive of a linear
equation whose complimentary function is known.

Let y = Ad(x) + By(x) be the complimentary function of the linear equation of
second order

d’y o dy
where A and B are constants and ¢ (x) and y(x) are functions of x
Since, y=A0 (x) + By (x)
d*y . dy

Satisfies the equation —5 +P ==+ Qy=0
dx dx

[A9”(x) + By”(0)] + P [A¢ "(x) + By’')] + Q [A (v) + By ()] =0

or Afo” () + Po’ () + Qo ()] + B [y” (¥) + Py’(x) + Qu(x)] =0
0" (x) + Po” (x) + Qo(x) =0 (2
and v (x) + Py () + Qu (x) =0 ..(3)
Now let us assume that
y=A¢ () + By (x) .4

is the complete primitive of (1) where A and B are not constants but functions of x to be
so chosen that (1) will be satisfied.

d’ dA dB
=AY W@ FBY W 0@ v

Let A and B satsify the equation,

dA dB
0@) -t wl) o -=0 ..(5)
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Z_y = A9’ (x) + By’ (v)
X

2
and Z Y =AY’ (¥) + By” («c>+d— 0 W+ dB ~ W .
x

Substituting in (1) we have

[Aq)”(x) +By )+ A <|> (x )+ w (x)}
+ P [A0 (v) + By’ (v)] + Q[A$ (v) + By (v)] =R
or  Al0” (x) + P’ (x) + Qd )] + Bly” (¥) + Py’ () + Qv (x)]
dA . _dB
+0 (x)EJFIU (x)EZR

Since the co-efficient of A and B are zero [by (2) and (3),] we have

dA dB
¢'(x)—+ ()——R -..(6)
Solving (5) and (6) for dA and aB , we get
dx dx

dA _ -Rwy(x) _~Ryx)

de  0) wx) — o'(x) wlx) w
and dB _ ,RQ)(x,) :R¢(x)

de  O(x) y'lx) - ¢(x) wix) w

dox)  wlx)

where W= ¥x) Wy is called the Wronskian of ¢(x) and y(x).

Integrating (7), A=— J‘RW(’C) te, B= J‘Rq)(x)l e,

Substituting these values of A and B in (4), we get the complete solution of (1).

Note 1. As the solution is obtained by varying the arbitrary constants of the
complementary function, the method is known as variation of parameters.

2. Method of variation of parameters is to be used if instructed to do so.

SOLVED EXAMPLES

Example 59. Apply the method of variation of parameters to solve:

2
xzd_y_{_xd_y_y :x2ex.
dx? dx

Sol. The given equation in standard form is

d’y 1ldy 1

e g @Y e (1)
1
Here P=—, Q=- iz, R=e"
x x
Now to find the C.F. of (1) i.e., the solution of the equation
d’y 1dy 1
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Ordinary Differential 2
Equations or x? d—y + xd—y -y =0 ..(2)
which is a homogeneous equation, put x = ¢* so that z = log x.

NOTES Let D = di’ then equation (2) becomes
z

DO-1)+D-1y=0 or (D*=1)y=0
Its AE. ism?—-1=0sothatm==+1
Solution of (2) is Y=t et=cxt et

= Parts of C.F. of (1) are ¢(x) = x and y(x) = %
Wronskian of ¢(x) and y(x) is

‘fl)(x) W(x)
o'(x) y(x)

m|H K |
—
—
[\

B
Let y = A¢(x) + By(x) = Ax + — be the complete solution of (1) where A and B are
x

functions of x determined as follows:

1
—.e
1 1
AZ—J.R‘“;x)dx+clz— X 5 dx+01:§_[ex dx+01=§e’c+c1

x

R o
and BZJ. j;éx)dx+02=.|.—e 2xal3c+c2
Cx
= —%J.xze’“alowrc2 = —%(x2 ~ 2% +2)e* +ey = —%xze’C +@x-De* +c,

Hence, the complete solution of (1) is
y = Ad(x) + By(v)

(%e’c +c )x + [— %xzex +(x —1)e” +c2}.

c -
=clx+—2+lxex—lxex+ x-1 e”
x 2 2 x

X

c 1

or yzclx+—2+(1——)ex
x

where ¢, and ¢, are arbitrary constants of integration.

Example 60. Using method of vartation of parameters, solve:

2
2d’y dy _ )
R e

Sol. The given equation in standard form is

— +-F -y =xlogx NE))
x
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12

2
Here P=—, Q:——z, R=xlogx
x X

Now to find the C.F. of (1) i.e., the solution of the equation

S22 2y o

dx? x dx 2

d’y dy

222 2 =2 12y =0 2
or x e xdx y ()

which is a homogeneous equation, put x = ¢° so that z = log x.

Let D = di’ the equation (2) becomes
z

DO-1)+2D-12]y=0 or (D*+D-12)y=0

Its AE. is m2+m-12=0 or (m+4) (m-3)=0
= m=3,-4
Solution of (2) is y=ce”+cet?=cx8 + et

= Parts of C.F. of (1) are ¢(x) = x® and y(x) = L4
x

Wronskian of ¢(x) and y(x) is

3 1
0wl | .4 8 _ T
o(x) ) 32 4 x?  x? x?
x5

B
Let y = A¢(x) + By(x) = Ax® + — be the complete solution of (1) where A and B
x

are functions of x determined as follows:

1
xlogx. =
A: _J.R‘llgfx)dx +Cl = —J.—7xdx+cl
%
1 1 1 (logx)* 1
=7J.(1ogx).;dx+c1:7_ g2 +C1:E(10gx)2+cl
R P
and B:f j;(]x)dercz:J'xlOg?;x dx +c,
%

7 7
= —%J.(logx).xﬁdx te, = —%[(logx).%—f%.%dx}+cz

——ilo oc+i £+c —i —logx+l +c
T a9 B T T T2 T o 7)7

y=Ao@ + By

7
= [ﬁ(logx)2 +cl}x3 +[z—9(—logx +%)+02}.xi4

3 3
3,0 X 2 X 1
=cx’+—=+"—Uogx) +—|-logx +=|.
Ot Tty los ) 49( & 7)

Linear Differential

Equations of Second and

Higher Order

NOTES
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Ordinary Differential Example 61. Apply the method of variation of paramelters to solve:

Equations 2
2d”y dy
X dx—2—2x(1+x)£+2(1+x)y = x5
Sol. The given equation in standard form is
NOTES 9
dy_2(1+x)d_y+2(1+x) — )
22 a—— 2 Yy =
21 21 +
Here, P=- ( +x), Q= ( zx),RZx
x X
2(1 2(1
Since P+Qx=- (;x)+ (;x)ZO

.. y=xis apartof CF.
Now to find the C.F. of (1), i.e., the solution of the equation

d’y 21 +x) dy 20 +x)

=0 L2
dx? x dx x? @
dy dv d’y d% dv
Put y=uvxso that azax+l and W:dx_szrza

Substituting in (2), we have

dv . dv 20+x)( dv 21 + x)
+2—— X—+0v |+ VX =
dx dx X dx x2
2
or x D049 oy )d—”—z(“x)u G2,
dx? dx x x
d% dv d _dv
——2 — =0 Z 2= =0
o dx? dx o dx? dx

Its A.E. 1s m?—2m=0 sothatm=0,2

K v=c e+ et = + e e?
= Solution of (2) is y = vx = ¢,x + c,x €2°

= Parts of C.F. of (1) are ¢(x) = x and y(x) = xe?*
Wronskian of ¢(x) and y(x) is

o(x)  wilx) x xe
(%) wix) 1 1+ 2x)e?

Let y=A ¢(x)+ By(x) = Ax + Bxe?* be the complete solution of (1) where A and
B are functions of x determined as follows:

2x
A——IRw(x)d +e __J'x - Xe —dx +¢

2x
= 2x2e%*

= _Ejdx+01: —§+c1

and B= J.Rj;éx)

x.x 1, o 1
dx +c, =_|.Walx+c2 :§_|.e xdx+02:—ze T+,

Hence, the complete solution of (1) is
y=A0) + By(y) = (— % +e )x + (— ie—zx +e, jerx

2

o oxt x

or y=cx+cexe - ==
1 2 5 "2

where ¢, and ¢, are arbitrary constants of integration.
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or

or

or

or

or

or

Example 62. Using method of vartation of parameters, solve

d*y dy

l-x)— +x —-y =(1-x)>2
(-9 g +x -y =(0-9
Sol. The given equation in standard form is
2
dy+ X .d_y_ 1 y=1-x
dx?> 1-x dx 1-x
1
Here, P= ad , Q=- , R=1-x«
1-x 1-x
Since, P+ Qx= r Lz =0
1-x 1-x

y=x1s a part of C.F.
Now to find the C.F. of (1), i.e., the solution of the equation

d?y x dy 1
+ —_— - =0
dx? 1-x dx 1—xy
dy dv d%y d% dv
Put y = vx so that T = ax +v and 202 dx—zx + 25
Substituting in (2), we have
d% dv x dv 1
—+2—+ X —+0v |- vx =0
dx? de 1-x\ dx 1-x
P o o
dx? dx 1-x dx
d’v 2 x \dv
—+| =+ — =0
de?2 |lx 1-x]dx
dp (2 1 dv
— 4+ —+ -1 = h = —
dx (x 1-x Jp 0 where p dx
dap :( _L_Zde
p l-x x
Integrating, log p = x+ log (1 —x) —2log x + log ¢,
= 10g Cl(l _Zx)ex
x
g1 -x)e” dv ¢ (1-x)e
p= x2 or dx h x2
1 1 X 7, X
dv = c, (—2 - ;Je dx | Form [£(x) + f(x)]e
x
I . _ 1),
ntegrating, V=0 —— |e7 +¢y
X

Solution of (2) is  y =vx=—ce* + c,x
= Parts of C.F. of (1) are ¢(x) =—¢* and y(x) =x

X

olx)  ylx)
0lx) wi(x)

Wronskian of ¢(x) and y(x) is W =

X

—e
—e

| fx)e*

x
=(x— 1)e*
1
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Ordinary Differential Let y = A¢(x) + By(x) = A= ¢ + Bx be the complete solution of (1) where A and

Equations B are functions of x determined as follows:
Am - RYE) g A0 ey =[x du+e,
NOTES w (x —1)e
= x(—e_x)—J-l.(—e_x)dx +cl =—yxe ¥ —e ¥+ Cl

=—(x+ De*+c

R<|>(x) 1-x)(-e")
W ‘2 _I

dx +c, =|dx +c¢
(x —1)e* 2 J. 2

and B= f
=x+c,
Hence, the complete solution of (1) is
y = A¢(x) + By(x)
=[-@+De+c] (—e)+ (x+cyx
or y=—ce“te ot at 1+ a2
where ¢, and ¢, are arbitrary constants of integration.

EXERCISE H

Using method of variation of parameters, solve the following differential equations:

1. Z)“ly+4 D 9y e 2. Z)“ly+4 D oy=x +i
dx? dx dx? x2
dzy A d? d
2 20y Y

3. x°—= -9y = 48 ° 4, x°—>-x —+y=xlogx
alx2 ¥ dx dx? dx Y &
d’y dy 2 d’y dy _ 3

5. x2—2 —4x =2 + 6y = sin (log & 6. x*— —x —=x""

22 2e o (log x) n? Cdx

dzy dy 2 dy dy 2 -
7. x?=L+x—~L—y=x’logx 8. (1- x)—+x——y=2(1—x) e

Answers

c c 1 c c 1 1

1. y= 2+ 2+ ¢ 2.y= L+2+—x?-—logx
Y= PR Y=% 2 12 2 g
8. y=c ¥+ xS+ 3a0 4.y=clxlogx+c2x+%(logx)3
1

5. y=¢, x2+cx3+* [(sin (log x) + cos (log x)]

1 4

6. y=c, +tc,a%+ (x—1)e* 7.y=clx+c—2+§x3logx—§x2

x

1 _
8. y=cxtcett (2—xje X
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5. POWER SERIES SOLUTIONS

STRUCTURE

Introduction

Definitions

Power series solution, when x = 0 is an ordinary point of the equation
d%y
dx®

+P) D Q)y =0
dx

Frobenius Method: Series solution when x = 0 is a regular singular point of
the differential equation

d’y dy
W”D(x)ﬂ +Q)y =0

INTRODUCTION

The solution of ordinary linear differential equations of second order with variable
coefficients in the form of an infinite convergent series is called solutton in series or
integration in series.

The series solution of certain differential equations give rise to special functions
such as Bessel's function, Legendre’s polynomials, Laguerre’s polynomial, Hermite’s
polynomial, Chebyshev polynomials. These special functions have wide applications
in engineering.

In this unit, we will discuss methods of solution of second order linear differential
equations with variable coefficients in series along with Bessel's function, Legendre’s
polynomial and their properties.

DEFINITIONS

Power Series
An infinite series of the form
2 a, (v _xo)n =a + a, (x _xo) + a, (x —x0)2 + .-

n=0

is called a power series in ascending powers of x — ;.
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Ordinary Differential In particular, a power series in ascending powers of x is an infinite series

Equations
n — 2
2 a, x —a0+alx+a2x +
n=0
NOTES | x—ixn—1+x+x2+x3+
8 T 4T 21" 3l

n=0

Analytic Function

Afunction f(x) defined on an interval containing the point x = x, is called analytic at x,

f(n) (xO)

if its Taylor series 2 (x — x)" exists and converges to f(x) for all x in the

interval of convergence of Taylor’s series.

Note 1. A rational function is analytic except at those values of x at which its denominator

is zero. e.g., Rational function 2; is analytic everywhere except at x =2 and x = 3.
x* -bx+6

Note 2. All polynomial functions e*, sin x, cos x, sinh x and cosh x are analytic everywhere.

Ordinary Point
A point x = & is called an ordinary point of the equation

d” y+P(x) dy > £ QWy=0 ()

if both the functions P(x) and Q (x) are analytic at x = x,,.

Regular and Irregular Singular Points

If the point x = x, is not an ordinary point of the differential equation (1), then it is
called a singular point of equation (1). There are two types of singular points:

(1) Regular singular point.

(1) Irregular singular point.

A singular point x = x,, of the differential equation (1) is called a regular singular
point of (1) if both (x — x) P(x) and (x — x,)* Q(x) are analytic at x = x,,.

A singular point which is not regular is called an irregular singular point.

Remark 1. When x = 0 is an ordinary point of equation (1), its every solution can be
expressed as a series of the form

y= +ax+a2x+ax _Zax

Remark 2. When x = 0 is a regular smgular point of equation (1), at least one of its
solution can be expressed as

m+n
— m m+1 m+2 R 2 ) = a, X
Y =a X"+ axmt + a,nmte + X" (@ axtant o) E n
n=0
where m may be a positive or negative integer or a fraction.

Remark 3. If x = 0 is an irregular singular point of equation (1), then discussion of

solution of the equation is beyond the scope of this book.
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Power Series Solutions

POWER SERIES SOLUTION, WHEN x=01IS AN
ORDINARY POINT OF THE EQUATION

d? y
dx?

NOTES

+P() 24 apay = 0

Steps for solution:
1. Assume its solution to be of the form y = a, + a,x + a,x* + - + a x" + -

(D)

d 2
2. Find ol (or ") and ay (or y”) from y.
dx dx?

2
3. Substitute the values of y, % and d_%/ in the given differential equation.
X dx

4. Equate to zero the coefficients of various powers of x and find
a,, a,, a,, a,, - in terms of a, and a,.

5. Equate to zero, the coefficient of x*. The relation so obtained is called the
recurrence relation. 1t helps us in finding the values of other constants
easily.

6. Give different values to n in the recurrence relation to determine various
a’s in terms of a, and a,.

7. Substitute the values of a,, a,, a,, ... In assumed solution (1) above to get
the series solution of the given equation having a, and a, as arbitrary
constants.

SOLVED EXAMPLES

Example 1. Solve in series the differential equation

d?y

W +xy =0.

) . . . d? y dy
Sol. Comparing the given equation with the form 2z + P(x) Te +Qx)y=0,
x
we get Px)=0, Q) =x

At x =0, both P(x) and Q(x) are analytic, hence x = 0 is an ordinary point.
Assume its solution to be

y=a,taxtan’+and +o+a "+ LD
dy 2 3 1
Then ——=aq, +2a.,x + 3a.x* +4a,x°+ - +nax"t+ -
’ dx 1 2 3 4 n
dzy

and =2la,+32ax+43 ax’+54ax®+ +nm—1) ax =2+

dx?
Substituting these values in the given differential equation, we get

[2:1-a,+32 -ax+43-ax>+54- a1+ +nm—1)ax"?+ ]
txfa,taxtax?+ax®+-+ax"+]=0
21-a,t 32a,ta) x+ (@3- -a,+a)x*+ (54 a;+ ay)x’+
+{n+2)n+a, +a, ja"+-=0

Self-Instructional Material 169



Ordinary Differential Equating to zero, the various powers of x as,

Hauations Coefficient of 1% = 0
= 2-1-a,=0 = a,=0
NOTES Coefficient of x =0
= 32 a,+a,=0
__ % _ a
- %7732 = =g

Coefficient of ¥ = 0

= 43-a,+a,=0
. __ 24
= a4——4.3 or a,=— 2]
Coefficient of x* =0
= 54-a;+a,=0
= a;=— 5(1% or a;=0
Coefficient of x* =0
= 6:5-a,+a,=0
= a. = 4 % or a. = 4y
6 6-5 6-5-3! 6 6!
and so on.
Coefficient of x* =0
= m+2)m+a,,.,+ta, =0
a,_
- a,y=— __n2l
n+2)(n+1)
which is the recurrence relation.
Putting n =5, 6, 7, ..., successively in recurrence relation, we obtain
5-2a, -7
=~y a,=0, ay= o1 a, and so on.

Substituting these values in (1), we get

_ Qg 3 209 4 40y g b52a; o 9
y—ao_"alx_ax _Tx +Fx +Tx 9‘ (lox + -
3
= y=a,|1->- flh e 14T 5 :|+al[x—£x NELINS
3! 6! 9! 4! 7!

where a, and a, are constants.

Example 2. Solve in series the differential equation

1+ xz) —- + dy —y =0 aboul the point x = 0.
dx? dx
Sol. Comparing the given differential equation with the form
d’ y+P( )dy + Q) y =0, we get

Px) = and Qx) =

X
2
X
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and

Both P(x) and Q(x) are analytic at x =0
x = 0 is an ordinary point of the given differential equation.
Assume the solution to be

y=a,tax+an’tax®t o +axtt o (D
Then ﬂ=a + 2a,x + 3a.x2 + - + na x" 1+ -
; a0 o '3 a,
d2
_‘;} =2.1- a, +3.2. X + e+ n/("/ _ l)a A2 4
dx "

Substituting these values in given equation, we get
A+x?)[21-a,+32 ax+43 -ax*+ - +nn—-1) ax 2+ ]
+x [a; + 2a,x0 + 3a.x? + 4aP + o a4 ]

2 34 ... no4 ...] =
—la,+ax+ax*+ax’+ - +ax"+]=0

Coefficient of x° =0

= 21.a,—a,=0 = a,=—-

Coefficient of x =0
= 3.2a;,+a,—a; =0 = a,=0
Coefficient of ¥ =0

= 21.a,+43.a,+2a,—a,=0
= 43 a,+3a,=0
= 04——%——618—0 or (14——6%0
Coefficient of x*> = 0
= b4 a,+32 a,+3a,—a,=0
= 20a; + 8a, =0 = a,=0
Coefficient of x* =0
= 65.a,+43.a,+4a,—a,=0
= 30a, + 15a, =0
= ag=— % = Clt—% or a; = Clt—%
Similarly, a, =0, ay =0, a;; = 0 and so on.
Also, Coefficient of x* =0
m+2)m+1a,,+nmn-ha, +na,—a,=0
= an+2=—(Z;;Jan vont120
Putting n =6, 8, 10, ..., we get
a.=_2 4 - 5%
8 8% 128
(1,10=—la8:7ﬂ and so on.
10 256
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Ordinary Differential Substituting these values in (1), we get

Equations
_ Gy 2 @y 4 G 6 52y g  Tag 10
=q.tax+t—x‘-——Lx"+"Lx°-—Lx°+— —
VAT AT T T e T 128" T 256
NOTES X2 xt x5 Bx8  7xl0
= y=ay |1+ —-—+—-——=+ —e |+ agx
2 8 16 128 256

where a, and a, are constants.
Example 3. Solve: (1 —x2)y” —xy’ + 4y =0 in series.
Sol. Comparing the given differential equation with the form
¥y +P)y + Q) y =0, we get

Since both P(x) and Q(x) are analytic at x =0, hence x = 0 is an ordinary point of
the given equation.

Assume the solution to be

_ 2 3 n
Y=ay+ ax+ ax +ax + o +ax"+ ..(1)
’_ 2 n—1
Then, ¥y =a, +2.ax+3.a,5°+ - +nax" +
— 2 ..
and y'=21 a,+32.ax+ - +nn-a, x"*+

Substituting these values in given equation, we get
(1-x%)[2.1. a,+32 ax+43. ax?+ - +nm—1)a, "2+ ]
—x[a, + 20,0 + Bax® + - +na, X+ ]+ 4 oy e T at Had o axt+ o]

Coefficient of x° =0
= 2.1. a,+4a,=0 = a, = —2a,
Coefficient of x =0

= 3.2a,—a, +4a,=0 = a,=——+

Coefficient of x2 =0
= 43.a,-21a,—-2a,+ 4a,=0 = a,=0

Coefficient of x* =0
= H4a,-32a,-3a,+4a,=0

as 1(-aq aq
— )| = —=—| — [=——
VIV D) 8
a;
= a :_? and so on.

Substituting these values in assumed solution (1), we get

_ a; a
y—a0+a1x—2a0x2—?x3—? x5+ -
2 4
= y=a, (1-22) +ax|1->_* _ ..
0 1 2 8

where a, and a, are constants.
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Example 4. Find the power series solution of the following differential equation
about x =0

2
(17x2)d_$;_2xﬂ +9y=0.

x dx
Sol. Comparing the given differential equation with the form
d’y dy
— + P(x) == + Qx)y =0, we get
1o (x) i Q)y =0, weg

- 2x
Plx)=——, Q) =
®=1" 7 QW= 1"
Since both P(x) and Q(x) are analytic at x =0, hence x = 0 is an ordinary point of
the given equation.
Assume the solution to be
y=a,tax+an’tax®t o +axtt o (D
Then, ¥ =a, + 20,0+ 3ax? + daxd + o +na, xm+
y'=21a,+32 a;x+43. a,x*+ -+ n@m - Da, x" 2+ -
Substituting these values in given equation, we get
(1-x%)[2.1. a, +3.2. ax+4.3. ax?+ - +nm—1)ax2+ ]
—2x [a, + 2a,x0 + Bax? + 4o + o +na, x4 ]
+2[a,taxt+ax?+an®+ - +a "+ ]=0
Coefficient of x° =0

and

= 2.1. a,+ 2a,=0 = a,=—a,
Coefficient of x =0
= 3.2.a, —2a, + 2a, =0 = a,=0
Coefficient of x = 0
= 43.a,-2.1 a,—4a,+ 2a,=0
= 12a, —4a,=0 = (14—22:—%’ = a4——C;—°
Coefficient of x*> = 0
= bd.4a,—-3.2. a,—6a,+ 2a,=0
= 20a; — 10a; =0 = a,=0
Coefficient of x* = 0
= 6.5.a,—4.3.a,—-8a,+2a,=0
= 30a, — 18a, =0 = (1,6:%&4 = a6——%

Also, a; =0, a;=0 and so on.

Substituting these values in assumed solution (1), we get

xt xf
= y=a, 1—x2—?—?—--- +ax

where a, and a, are constants.
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Ordinary Differential Example 5. Solve in series the differential equation

Equations
d’y ., dy
1-x%) == -2x= +pp+1y=0.
( ) 5?2 p@ + Dy
NOTES — +1
Sol. Here, P) = _sz, Qx) = p(p—z)
1-x 1-x
Since both P(x) and Q(x) are analyticat x=0 .. x=0is an ordinary point of
the given differential equation.
Let the solution be  y=a,+ a,x+ @+ - +a, Xt = 2 a, x"
n=0
..(1)
d - -
d_ilc: 2 na,x 1 ..(2)
d2y . n-2
W: Z n(n-1Da,x (3

n=0

Substituting the above values in the given equation, we get

1—42 nin-1a, x" % -2 na, x" 1+ pp+1) a, x" =
( ) n n n
n=0

n=0 n=0
= 2 nin-1a, "% - 2 a,nm—1)+2n—-pp+ Hlx"=0
n=0 n=0
= Z nin-1a, x" 2 - Z a,m—p)(m+p+Dx"=0
n=0 n=0

This is an identity in x.
Coefficient of x* =0

= m+2)m+Da,,,—0-p n+p+a, =0

n+2

_(n-pn+p+)
2T+t

Puttingn =0, 2, 4, ..... ete., we get

a

-p(p+1)
2T g1 @

2-pB+p _(p-2)(P(p+D(p+3)
WE=Ty3 2T 41 a, ete

Again, puttingn =1, 3,5, ...... etc., we get
_A-p)p+2) __ (p-1V(+2)

s 3.2 L 31 !
B-pp+4  (p-3)(p-D(p+2)(p+4)
%= pa T 51 a, ete
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Substituting these values in eqn. (1), we get

Power Series Solutions

21 4!

v—a [1_p(p+1)xz+(p—2)p(p+1)(p+3)x4_ ______ ]
0

x3+

(p-3)p-D(p+2)(p+4) 5

+a, [x_(p—l)(p+2)

31 51

Note. Above method is an aliter to the method of solution in series discussed before and

preferred when, we get the recurrence relation in between a, and a, .

Example 6. Solve the differential equation y” +(x — 12y —4(x—-1)y =0

in series about the ordinary point x = 1.
Sol. Put x=¢t+1(orx—1=1)

dy _dy dt _dy

dx dt dx dt
d d

d_zy:i(ﬂ):i(ﬂJ:d_zy
dx?  dx \dx dt \ dt dt?

The given equation becomes,

dy

dt*
Now, ¢t = 01s an ordinary poindt.

+ 2y — 4ty =0

Assume the solution to be

y=aytattal?+al’+ . +a bttt
then Y =a, +2a,t+ 30,8 + ... +tna (" +
and

Substituting these values in eqn. (1), we get
[2a,+3.2. at+43. a, ?+ ..+ nm—-1) a, t"?+.]
+ 1% [a, + 2a,t + 3ag 12 + 4a,t® +
— 4t [ay + at + a,t? + a,t +

Coefficient of {° =0

= 2a,=0 = a,=0
Coefficient of t = 0
2
= 3.2 a, - 4a,= 0 = | a="
Coefficient of 2 =0
= 43.a,+a;,—4a,=0
a1
= 12a, = 3a, = a,= e
Coefficient of t* = 0
= 5.4 a,+ 2a,—4a,=0 = a,=0

y'=2a,+32. at+..+tnm-1a t"?+ .

] NOTES

(D)

| given

(2

1
tna "t + ]
Ltatr+..]1=0
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Ordinary Differential Coefficient of t* =0
Equations = 6.5 a,+ 3a,—4a,=0

_ a3 2a‘O - 20

Now, Coefficient of " =0
= m+2)m+a, ,+m-Da, —4a, ,=0
. 3 (n—-5) a

G2 T T+ 2Qm+ D "

Puttingn=25,6,7, 8, ..., we get

a7=O
-1
a8=§a5=0
T2, -"2% __ %
9%~ 98 "% 9845 1620

and so on.

Substituting these values in (2), we get

ﬂt‘L +&t6 __% P+ -
4 45 1620

4
=a, 1423 Ly Loy +a, t+l
3 45 1620 4

- 2 1P + 1 et (x —1)° BRI
=y a0[1+3(x 1) +45(x 1) 1620(x 1) +..}+a1[(x D+ 1 }

2 3
y=a0+a1t+§a0t +

where a, and a, are constants.

EXERCISE A
Solve the following equaltions in series: [Dashes denote differentiation w.r.l. x|
2
1. %—y=0 2.y +x*y=0
3. Oy +xy+y=0 @)y —xy +y=0
4. Oy —xy +x2y=0 @)y +xy +x2y=0
5, 1-x)y"+2xy+y=0 6. 2+x)y' +xy+(1+x)y=0
7. @2+ 1Dy +xy—xy=0
8. W(Z-1y +4xy +2y=0 G) (2=1)y " +xy—y=0
9. Oy +xy+@x2+2)y=0 @) (x2—1)y"+3xy’+xy=0;y(0)=4, y'(0)=6.
10. (1) y ' —xy +2y=0nearx=1 @)y + (x—-3)y +y=0near x=2.

Answers
2! 4! 6! 3! 5!
4 8 5 9
2. y=ay|1-2 4L iga- 2
3.4 3.4.7.8 4.5 4.5.8.9
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R %8 x3 4P %7 Power Series Solutions
3. Wy=aqy|l-—+—- a1l x— —_——
2 2.4 246 3 3.5 3.5.7
2 4
@)y =a, l—x——x——i 6—ﬁac8+ +ax
21 4! 6! 8! NOTES

5, y=a,|1 x2+x4+ J+a (x 3+x5+ ]
—a|1- X Jx- 2
2 8 2 ' 40
6 N S 2 DN DN A
=% 4 12 96 ™ 6 24
3 5 3 4 5
1. y=a, 143 +aq IR S
6 40 6 12 40

8 My=a,A+x2+xt+ . )+a, (x+a3+a2+ )

x2 x4
(ii)y:ao 1+?+T+... +a1x

4 3
9. (l)yzco(l—x2+%+...]+cl(x—x—+ix5—...]

- 11 1 11
(”)y:4+6x+?x3+§x4+Ix5+m

10. ()y=a, |:1—(x—1)2—%(x—l)s—...:'+a1|:(x—1)+%(x—1)2—...:'

. 1 g 1 3 1 4
= T (x- T (x=-28 - —(x-2
i)y =a, {1 5 (x-2) 5 (x - 2) T (x—2)% + }

+a1|:(x—2)+%(x—2)2—%(x—2)3—%(x—2)4+...:'

FROBENIUS METHOD: SERIES SOLUTION WHEN X=0

IS A REGULAR SINGULAR POINT OF THE

d? d
DIFFERENTIAL EQUATION 4 "2’ + P(x) + d—‘)': +Q(x)y=0
X

Steps for solution:

1. Assumey = aq, x™ + a2 + @, + - LD

2
2. Substitute from (1) for y, ﬂ, d”y in given equation.
dx dx?

3. Equate to zero the coefficient of lowest power of x. This gives a quadratic
equation in m which is known as the Indictal equation.

4. Equate to zero, the coefficients of other powers of x to find a;, a,, a., ... interms
of a,.
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Ordinary Differential 5. Substitute the values of a,, a,, a....in (1) to get the series solution of the

EBquations given equation having a, as arbitrary constant. Obviously, this is not the
complete solution of given equation since the complete solution must have
two independent arbitrary constants.

NOTES

The method of complete solution depends on the nature of roots of the
indicial equation.

Case |. When Roots are distinct and do not differ by an integer

eg., m, = 2’ m,=1

Let m, and m, be the roots then complete solution is

y= Cl (y)ml + Cy (y)m2

SOLVED EXAMPLES

Example 7. Solve in series the differential equation:

d’y dy
2 (1 -x) =2 +(5-7x) == — 3y =0.
X (1-x) dx2+( x)dx Y

. d? d
Sol. Comparing the given equation with d_;; + P(x) d_y + Qx)y =0, we get
X X

5-"Tx B -
(-2 2= 51—
At x =0, Both P(x) and Q(x) are not analytic, hence x = 0 is a singular point.

P) =

5-Tx
Now, xP) = m
- 3x
X% Qv) = 20-%
At x =0, both x P(x) and x? Q(x) are analytic, hence x = 0 is a regular singular
point.
Let us assume
y=ay X"+ ™t + a, x4 gt LD
Then, ¥y =max™ '+ (m+1)a, x™+ (m+2) a, ™1+ (m + 3) a; x™2 + -
and y=m@m-1) a,x" 2+ @m+ 1) ma, x™ "+ m+2) (m+1)a,x™

+(m+3) (m+2) a,xm T+
Substituting these values in given equation, we get
2x (1-x) [m(m — 1) ay x™ 2+ (m + 1) ma, x™!
+(m+2) (m+1)a,x™+ (m+3) (m+2)a, xm+ ]
+ (B =Tx) [ma,x™ 1+ (m+ 1) a, x™+ (m + 2) @, X"+ (m + 3) @y ™2+ -]
=3 [ay ™+ a, x™ + @, X"+ a, x4 ] =0
Now, coefficient of lowest power of x =0
= Coefficient of x™ 1 =0

= 2m (m —1) a,+b5m a,=0
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and

= (2m? + 3m) a,=0

= 2m2+3m =0 (v a,#0)
This is called indicial equation
m@2m +3)=0
= m=0, - 3/2
Roots are distinct and do not differ by an integer.
Now, Coefficient of ™ =0
= 2m+ 1) ma, —2m (m—-1)a,+5m + 1) a, = Tma, - 3a,=0
= (m+ 1) 2m +5)a, = 2m?-2m + Tm + 3) q,

_m+D@m+3)
N mrD)©@2m+5) °

2m + 3
= a
2m +5

= a, 0

Coefficient of x™** =0
= 2m+2)(m+Da,-2m+1)ma, +5m+2)a,-7m+1)a;, —3a,=0
= (m+2) 2m+7)a,=@Em?>+2m+Tm+7+3)aq,
=@2m?+9m +10) a, = 2Zm + 5) (m + 2) a,

_2m+5 2m+5 2m+ 3

= T om+7 T 2m+7 2m+5 0
_2m+3
= Y= om+7 %0
Similarl u 2m+7a 2m +7 2m+3a
imi = Qg = "
v 57 2m+9 ° 2m+9 2m+7 °
_2m+3a
= Y= 9m+9 °
SO on.
Hence, from (1),
=x"|q +2m+3a x+2m+3a x2+Ma X2+
Y o 5 O T g 7 0T T g 0 T
= Yy=agx™ |1+ 2m +3 x+ 2m +3 xZ + 2m +3 X%+ ... -.(2)
2m +5 2m + 7 2m+9
Now, Y1 =0,
3 3 2 3 3
=q,|l+—-x+=—x"+—x"+... .3
Y1 0|: 5 7 9 :| 3
Also, Vo= ), - =X A+0.x+0.22+0. 2%+ ..)
Yy = g x P .4

Hence the complete solution is given by

y=c¢, ¥, ey, =c a (1+gx+%x2 +%x3+...)+c2a0x3’2

Self-Instructional Material
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Ordinary Differential 3 3 3
Equations N y=A(1+gx+?x2+§x3+---)+Bx3/2

where A and B are constants.
NOTES Example 8. Solve in series the differential equation

2
2x2%+(2x2—x)%+y:0.

d* d
Sol. Comparing the given equation with d_;; + P(x) d_y + Qx) y =0, we get
X X

2x2 — x 1 1
2

P(%’): =1—§ and Q(%’):W

At x =0, Both P(x) and Q(x) are not analytic, hence x = 0 is a singular point.

1 1
Now, xPx)=x— 5 and x2Q(x) = 5
Since both x P(x) and x? Q(x) are analytic at x = 0, hence x = 0 is a regular
singular point.
Let us assume
Y =a, X" @ X+ ay a7+ ag o .1

Then, y' =may,x™ '+ @m+1)a,x™+ (m+2) a, x™+ (m + 3) a, £+ ..
and  y'=mm-1a,x" 2+ m+1)ma,x"+(m+2) (m+1)a,xm
+(m+3) (m+2) a, x™ + .

Substituting these values in given equation, we get

2x¢% [m(m — 1) @y x™ 2+ (m + Dm a, x™ 1 + (m + 2) (m + 1) a,x™
+(m+3)(m+2) a;x™ + . ]+ 2% —x) [ma,x™ 1+ (m+ 1) a, x™
+(m+2) a, ¥+ (m + 3) @y &2+ L]
+[a, a™ + a; &+ a, x4 g, v+ L] =0

Now, Coeff. of lowest power of x =0 1.e., Coeff. of x™ =0
2m (m—-1) a,—ma,+a,=0

= @2m? -3m+ 1) a,=0

= (2m —1) (m — 1) = 0 (since a, # 0)

which is indicial equation.

1
Its roots are m=1, 2

Roots are distinct and donot differ by an integer.

Now, Coefficient of ¥+ =0
= 2m (m+ 1) a, +2ma,—(m+ 1 a;,+a, =0
= 2m?+m)a, +2m a,=0
2
= a,=-— a |+ m=#0
2m+1

Coefficient of x™™% =0
= 2m+2)y(m+Da,+2m+1)a,-(m+2)a,+a,=0
(2m? +5m + 3) a,+ 2(m + 1) a, =0
@Cm+3)(m+1)a,+2m+1)a, =0

U

U
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L m2 2 (2
2 9m+3 ' 2m+3 2m+2

Qo

4
T om+ D) @2m+3)

= 0

Similarly, we can find
-8
a, = a
S C2m+1D2m+3)2m+5)
16
a, = Qg
4 Cm+1D(2m+3)2m+5) 2m+17)

0

and so on.
2 4 )
- x + x
2m +1 @2m +1)(2m + 3)

y=a,x™ [l

8
- %3 +} )
@2m +1)2m +3)(2m +5)

3.5 3.5.7
2 3
or Y= Ay X l—gx+2—x2— 2 K+
3 3.5 3.5.7
and Yo = O p=1sg

1 1
=a, xM? [1—x+—x2 ——x3+..}
Yo = Qg 2 6

Hence the complete solution is
Y=C T ey,

2 3
=Ca5 X% l—zx+2—x2— 2 x3+...
3 3.5 3.5.7

1 1
+cza0«/;(1—x+§x2—gx3+...

. (3)

e

Power Series Solutions

NOTES

)

3.5 3.5.7

2 3
= y:Ax(l—gx+2—x2— 2 x3+...J+B\/;(1—x+%x2—%x3+--

)

where A and B are constants.

EXERCISE B
Solve in series:
d’y ., dy _ o &y _dy _
1. 9x(1—x)w—12£+4y—0 2.x(2+x I dx—ny—O
dzy dy _ 2d_2y_ ﬂ 2\ n —
3. 3xw+2£+y—0 4. 2x 72 xdx+(1—x)y—0
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Ordinary Differential 2
Equations 5. 2%y +xy —(x+1)y=0 6. 2x (1 - ) d—i +A-0 P 120
dx dx
d?y dy 1 1
7. 28 =2 —x L +(x-5)y=0 8.+ —y +—5y=0
dx? dx Y 4x 8x2
TE
NOTES 9 2x2d—2y—xﬁ+(x2+1)y:0 10 4xd_2y+2(1_x)ﬁ_ =0
) ’ dx2 dx ’ s de dx y=0.
11, 2x%y"+T7x(x+ 1)y’ —3y=0 12. 2%y +x@2x+ 1)y —y =0
Answers

1 oy=Af1elep bt 4T s Vi1 8 81,0 8ILIE 5
3 3. 3.6.9 10 10.13 10.13.16

_ 2.3 4 1 5 a0 1+§ 2_3.1 4 5.3.1 6
2.y A[1+3x +gx —x°+..| +Bx 896 8.16x 8.16.24x

2 3 2 3

X x x X x x
. =All-S+ .| +B Bl ——+
5y (1 2+20 480+ J B ( 4 56 1680 J

2 4 2 4
4 y=Ax|l+ v —F B2 1+
2.5 2.4.5.9 2.3 2.4.3.7

5. y=Ax 1+lx+ix2+... +Bx~ 12 1—x—1x2+...
5 70 2

2 3 4
6. y=A[1—3x+3x+3x+3x+...j +Byx (1-x)

1.3 3.5 5.7
2 3 2 3
7 y=01x5/2 A S +cox L 1+2+ 2 02 4
: 9 198 7722 5 30 90

8. y= Afx + Bl

2 4 2 4
9. yZAx(l—x—+x——...]+Bx1/2 (1_x_+x__mJ

10 ' 360 6 168
2 3 2 3
X X X X X X
10, y=A|[l+—+——+——+..| +Byx |1+ —+ ——+———+ |
Y [ 211 2291 933 ] */_( 1.3 1.35 1357 ]

7 49 o -3 21 49 -
= AVx|1-—x+—x" ... B 1-—x+—x"...
11. y x( 1896 264x j+ X ( 5x 5x j

2 4x?  8x°
+ -+ ...
5 35 315

2 3
12. y:Ax”z[l—x+x2—xG+....]+Bx[1— s

Case Il. When Roots are Equal e.g., m, =m, =0

Complete solution is

o
y=c (y)ml +Cy (%)

1
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SOLVED EXAMPLES Power Series Solutions

2
Example 9. Solve in series: x (x— 1) % +(8x-1) j—y +y=0.
X X

NOTES
Sol. Comparing the given equation with
2
%4‘ P(x)% + QM) y =0, we get
3x-1
P)= =" and - -
(%) x(x-1) and Q) x(x -1

At x =0, Both P(x) and Q(x) are not analytic, hence x = 0 is a singular point.

3x x
_2r— - 2 -
Now, x P(x) 1 and x? Q(x) 1

Both x P(x) and x2 Q(x) are analytic at x = 0, hence x = 0 is a regular singular
point.

Let us assume

Y =a, "+ a ™+ a, k2 + g a8+ .1
Then, Y =mayx™ 1+ (m+ 1) a; &+ (m+2) ay &+ (m o+ 3) ag v+ L
and y'=m@m-1) a,x™ 2%+ (m+ Hm a, x™!

+(m+2) (m+1)a,x™+ m+3) (m+2) a, ™+ .
Substituting these values in given equation, we get
x@=1D[m@m-1)a,xm2+@m+1)ma, x™ 1+ @m+2) (m+1)a, "
+(m+3) (m+2)a, xm+ ]
+@Bx—1) [ma,x™ 1+ (m+1)a, &+ (m+2) ay x™1 + (m + 3) a, v+ ]
+[a, a™ + a, &+ a, T+ g ™+ L] =0

Now, Coefficient of lowest power of x =0

= Coefficient of x™1 =0
= —m@m-1)a,-ma,=0 = —-m?aq,=0
m2=0 (o ay#0)

which is Indicial equation

Its roots are m=0,0

Roots are equal.
Now, Coefficient of x™ =0

= mm—1)a,—(m+1)ma,+3ma,—(m+1)a, +a,=0
= (m + 1)2%a,—(m + 1)?a, =0
= a, = a, (v m=-=1)

Coefficient of x™*1 =0

= m+Yma,—m+2)(m+1a,+3m+1)a,—m+2a,+a, =0
= (m+2)?a,—(m+22a,=0
= a, = a, (v m#-=2)
= a, = a,
Similarly, we can show that
a, =a,

a,=a, and soon.
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Ordinary Differential y=ax" (1+x+ a2+ + ) | From (1)

Equations Now, 3, =), =aq, X QA+x+a?+a>+. )=a, (1 +x+a?+a’+.)
y :(a_y] =[a, (1 +x+a2+ 2%+ ) a7 log x]
NOTES 2 om)p "

=aylog x(1+x+a%+x%+ )
Hence the complete solution is given by
y=cy, tey, =ca,(I+x+a?+x%+.0) +c,a,logx(1+x+ a2 +a%+ )
y=A+Blogx) 1+x+x2+x+..)

where A and B are constants.

2
Example 10. Solve in series the differential equation: x a’y + ay _ y=0.
dx?  dx
. . . d? y dy
Sol. Comparing with the equation ) + P(x)a +Q(x) y =0, we get
X
1 1
P(x)=—and Qx) =——
x x
Since at x = 0, both P(x) and Q(x) are not analytic .. x=01is a singular point.
Also, xPx)=1 and x*Q@)=-—x
Both x P(x) and x? Q(x) are analytic at x =0 .. x =0 is a regular singular
point.
Let us assume
Y =a, X" ap X+ @™t 4 g S + .1
Then, Yy =mayxmt+ (m+ 1) a xm+ (m+ 2) a, x4 (m+ 3) ag v+ L
and y'=m@m—1) a,x™ 2+ @m+ 1) ma, ™!

+t(m+2)(m+1)a,xm+ (m+3) (m+2) a,xm+ .
Substituting these values in the given equation, we get
x[m(m—1)a,xm 2+ (m+ Hm a, x™ 1+ (m+ 2) (m + 1) ax™
+(m+3) (m+2) a;x™ 1+ ]
+[magx™t + (m+ 1) a, x™+ (m+ 2) a, ¥+ (mo+ 3) ay 2™+ L]
—[ay xm+ a; ™+ a, x4 a0+ ] =0

Now, Coefficient of x™ 1 =0
= m(m —1) a, + ma, =0
= m?a, =0 = m?=0 (o ay#20)

which is Indicial equation.

Its roots are m=0,0 which are equal.

Coefficient of x™ =0
= (m+1ma,+(m+Da,—a,=0 = (m+1?aq,=aq,

a, = -
T (m+1D?

Coefficient of x™*1 =0
= m+2)(m+Da,+m+2)a,—a,=0 = (m+2*2a,=q
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= a =_% = a, = %o
2 (m+2)? 2 (m+1D%(m+2)?

Q
S. 1 1 , — 0
imilarly a, m+1%m+2)?2(n+3)

5~ and so on.
From (1),

) x’ + x’ +
Y= ot m+12 m+D2m+2? m+1D2m+22m+3?%
(2

2 53
Now, Vi =m0 =0y | 1+ x+ 217 + 317 +... . (3)

To get the second independent solution, differentiate (1) partially w.r.t. m.

X X X

2 3
om o logx{ T mA P mA2?  (ma1P (m+ 2P (m+ 37 +}

+ o qam 2x 2 1 1 9
¥ | = 3 2 2 + x
(m+1° (m+1D)°(m+2)7° (m+1 m+2

+ 1 x3 - ...
(m+1)2(m+2)2(m+3)2 m+1 m+2 m+3
Th d solution i _(a_y) oo v |1 2’
e second solution 1s y, = om =a,log x +x+(2‘)2 W+

1 1 1
_200[96 (2‘)2 (1+§)x (3‘)2(1 2+3)x +. ]

Hence the complete solution is

2 3
_ _ x x
y=cy, + ey, = (c,a, + c,a, log x) {1+ X+——+——5+ }

@n® (3n?
1 1\, 1 1. 1) 3
- 2¢ya, [x+w(1+§Jx +—(3!)2 (1+§+§)x +]
A+B1 x” 2
= +Blogx) |1+ x4+ ——+—=+...
- &Y @n? @3n?
. 1 1) o 1 1 1) 3
—ZB[er(z!)z (1+2]x +(3!)2 (1+2+3)x +]
where c,a, = A, c,a,=B.
EXERCISE C
Solve in series:
2
L @Dxy/+(1+9y+2y=0 (ii)xic—g+3—y—x _

Power Series Solutions

NOTES
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Ordinary Differential dzy dy
Equations 2. &2 F +x(x -1 e +(1-x)y=0
x

4. @-)y' +(1-0y -y=0
6. xy'+y +x2y=0

NOTES
7. xy"+y +xy=0.

Answers

3
21 3!

d’y dy
3. (x—a2) —2+(1-5x) == —4y=0
(x x)d2+( x)dx y

X

5. x2y"—x(1+x)y+y=0

(Bessel’s equation of order zero)

1. y=A (1—2x +x2_4x3+...J+B[y1 logx+a0(3x—{43x2+...ﬂ

2 4 2 4
P x x X 3x
(ll)y—(A+Blogx)(1+22+M+...J—B[22+2.43+...]
2
2. y=Ax+B xlogx—x+T—...

8. y=A@QZ+2%x+ 3% +4%5+ )+ By, logx—2a, (1.2x+2.3a2 + 34 2%+ )]

2 2.5 s 14
4. y=A|l1 Zx?+ 23|+ B |y logxtay| -2 —x® - —x® - ..
¥ [+x+4x tie® * j [yl og x ao( X =& o X
5. y=Ax 1+x+1x2+ix3+... +B| y; log x +agx? —1—§x+...
2 2.3 4
3 6 9
x x x
6. =A|1-5+ - +o
Y [ 2 3@’ 312 }

3
x 1 1
+B [yl log x +2a, {33—35(2')2(1+2ij +H
2 4 6 2
— x x x x 1 1) 4
7. y—A(1—22+22.42 VN +] +B {yllogx+a0 {22—22.42(1+2jx

PR S SN S
22 42 62 2 3 I

Case lll. When Roots are Distinct, Differ by Integer and Making a
Coefficient of y Infinite

Let m, and m, be the roots such that m, > m.,,

In this case, if some of the coefficients of y become infinite when m = m,, we
modify the form of y by replacing a, by b, (m —m,).
Complete solution is

om

o
Y= (P, +¢o (_y) :

Remark. We can also obtain two independent solutions by putting m = m,, (value of m

for which some coefficients of y become infinite) in modified form of y and (,;i The result of
m

putting m = m_ in y will give a numerical multiple of that obtained by putting m = m,,.
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and

SOLVED EXAMPLES

Example 11. Obiain the series solution of the Bessel’s equation of order two
d’y dy
=L ix=L +(x2-4)y=0 nearx=0.
dx? dx ( )y
Sol. Comparing the given equation with the form
d*y dy
—+P(x) — + Qx)y =0, we get
Ix2 T Q)y g

2
P) = % and Q) = X x; 4

At x =0, both P(x) and Q(x) are not analytic.

Therefore x = 0 is a singular point.

Also, xP@x)=1 and 2? Q) =x%2-4

Both x P(x) and x? Q(x) are analytic at x =0
x = 01s a regular singular poindt.

4

Let us assume,

— m m+1 m+2 m+3
Y=agX" +a X"+ a, X+ a, X+ ..(1)
dy
Then, d—Zmaoxm*1+(m+1)alxm+(m+2)a2xm+1+(m+3)a3xm+2+...
X

2
d—yzm(m—l)a X2+ (m+ 1) ma, x" 1+ m+2) (m+1)a, x™
d? 0 1 2

+(m+3) (m +2) a;x™ +
Substituting these values in the given equation, we get
x? [m(m — 1) @y x™ 2+ (m + 1) ma, x™!
+(m+2) (m+1) a,x™+ (m+3) (m+2)a, xm+ ]
+x[may e+ (m+1)a, &+ (m+2) ay &+ (m+ 3) a, v+ L]
+ (@2 =4 [a, x™ + a, "+ @y ™+ a4+ ] =0

Now, Coefficient of lowest power of x =0

= Coefficient of x™ =0

= m(m — Da, + m a,—4a,=0 = (m?>-4) a,=0

= m?—-4=0 (Indicial equation) |~ ay#0
m=-22

Roots are distinct and differ by integer.

Now, Coefficient of x*1 =0

(m+Dma,+@m+1)a, —4a, =0

= (m?+2m—3)a, =0 = (m+3)(m-1)a,=0

N a,=0 Since m # 1, and

m#-3

Coefficient of x™™ =0
> m+2)(m+1a,+(m+2)a,+a,—4a,=0
= (m?+ 4m) a, + a, =0
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Ordinary Differential -a,
Equations = a, = m
Coefficient of x™™ =0
NOTES = m+3)(m+2)a,+(m+3)a,+a, —4a,=0
= (m+1) m+5>5)a,=-a,
= a,=0 v oa;=0
Also, coefficient of x** =0
(m+2)(m+6)a,+a,=0
) Qo
= a,= =
m+2)(m+6) mm+2)(m+4)(m+6)
_ Qo
U I+ 2) (m+4) (m +6)
Similarly, a;=a;=ag=..=0

U = o m+2) (m+4)2 (m+6) m+8)

Substituting above obtained values in assumed y given by eqn. (1), we get

2 4
X X

y = agx™ {1_m(m+4)+m(m+2)(m+4)(m+6)

6
_ X +} )

m(m +2) (m +4)% (m +6) (m + 8)
Putting m = 2 (the greater of the two roots) in (2), the first solution is

y, = a,x’ 1—£+ xt x° +
b 2.6 2.4.6.8 2462810
If we put m =— 2 in (1), the coefficients become infinite due to the presence of
the factor (m + 2) in the denominator. To overcome this difficulty, let a, = b, (m + 2) so

that

2 4 6
y= by {(m+2)_(m+2)x + x x :I

m(m +4) m(m+4)(m+6)_m(m+4)2 (m+6)(m+8)+

Differentiating partially w.r.t. m, we get

ay (m+ 2)362 . x4 :|

—— =byx"log x {(m+2) -

mm+4) mm+4)(m+6)

2 1 1 1
U PR S

- m(m +4)

om

+ 1 ENE S S
m(m+4)(m+6) m m+4 m+6

The second solution is  y, = (%)
M Jm=—2
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x4 x6 Power Series Solutions

=b.x 2 log 1 -

orEs {(— 2@ (227 @) }

2 1 1 1 1
2l — [ == ‘.
* bot [ C2® 2@ (2 2 4) ¥ } NOTES

. 1 x2 _ x2 xt
—b0x2logx|:—22—.4+m...:|+box 2|:1+2_2+W+.“:|

Hence the complete solution is

Y =€t Gyl

x2 xt x8 9 1 x2
1-—+ - 5 +o.[[+Bla"logx| - ——+ 3
2.6 2.4.6.8 2.4.6°.8.10 2°.4 2°.4.6

= Ax?

where A =c,a,, B=c,b,.

2
Example 12. Solve in series the differential equation x° % + bx % +x%y=0.
X x
Sol. Comparing the given equation with the form
d’y dy
— + P(x) == + Q(x) y =0, we get.
12 ()a Q) y g
5
P@=>. Q=1
At x =0, since P(x) is not analytic .. x =0 is a singular point.
Also, xPlx)=5
¥ Q) =0
Since both x P(x) and x? Q(x) are analyticat x=0 .. x=01is aregular singular
point.
Let us assume
y=a, X"+ ™+ a, x4 g o+ .1
d
Fizmaoxm*1+(m+ Da, ™+ (m+2) a, x™ 1+ . (2
d dy _ 1 m2 4+ (m+1 ml + (m + 2 +1 m 4
an W—m(m— )y x (m+1)ma,x (m+2)y(m+1)a,x

. (3)

Substituting the above values in given equation, we get
x? [m(m —1) ay x™ 2+ (m + 1) ma, ™1+ (m+2) (m+ 1) ay x™+ ..]

+5x [may x™ 1+ (m+ 1) a, ™+ (m + 2) a, ¥+ L]

+a? [axe™ + a, a1+ a, v+ ] =0 (@
Equating the coefficient of lowest power of x to zero, we get
m@m —1) a, + d5ma, =0 [Coeff. of x™ = 0]
= (m? + 4m) a, =0
= mm+4)=0 (Indicial equation) (o ayz0)

-
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Ordinary Differential Hence the roots are distinct and differing by an integer. Equating to zero, the
Equations coefficients of successive powers of x, we get

Coefficient of ¥ =0
(m+1)ma,+5m+1)a, =0

= (m+5) m+a, =0 = a, =0 ...(D)
|+ m=#-5-1

NOTES

Coefficient of x*2 =0
(m+2)(m+1)a,+5m+2a,+a,=0
(m+2)y(m+6)a,+a,=0

_ —% 6
YT m+2) (m+6) -6
Again, Coefficient of x™* =0
m+3)(m+2)a,+5m+3)a,+a, =0
m+3)m+Ta,+a,=0
I
- ST m+3)m+7)
= a,=0 ..(7)
Similarly, a =a;=ag=..=0
Now, Coefficient of ¥ =0
m+4m+3)a,+dm+4Ha,+a,=0
= (m+4) m+8a,=-a,
= — % = %o t 8
U M +8) (m+Dm+Hm+6)(m+8) O -
2 4
. x x
Th =a,x™|1- + -
ERNE YA { (m+2)(m+6)  (m+2)(m +4)(m +6)(m +8)
Putting  m =01n (9), we get
2 4
ylz(y)m:():ao 1—x—+ X — e (10)
2.6 2.46.8

If we put m =— 4 in the series given by eqn. (9), the coefficients become infinite.
To avoid this difficulty, we put a, = b, (m + 4), so that

2 4
y:bOan|:(m+4) m+d)x” ad }“‘(11)

m+2(m+6) m+2)(m+6)(m+8)

9
Now, ~>- =ylogx+ boxm{1+

m2+8m+20 o  (3m? +32m +76) 4+}
.

X — X
(m? + 8m +12)? (m?® +16m? +76m +96)?

Second solution is given by

ﬂ) DY PP
y2—(am 4—(y)m:74logx+b0x 1+T_T+m

m=-
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(-2)(2)@4) 16

b 6 2 4 Power Series Solutions
X X X X
=byx*log x {0—0+———+..} +by vt (1+T__+"'J

4 6 2 4

-x° x 4 x“  x
=pxt - —...|+}b 1+ =—-"+..
by logx( 16 16 J 0¥ ( 4 4 J

Hence the complete solution is given by

Y=yt ey,
2 4 4 6
X X X X
= ay | 1- 2+ e, bt logx [ -
01“0( 12 384 J €220t Og”( 16 16 J
2 4
X X
+ bt (1+—4 vy +J
2 4 2 4
x x _4 X x
SA|1- e S Bt e
Y A( 12 384 J x( 4 4 J

Blogx| 2+Es
Y116 16

where A = c,a,and B =c,b,.

EXERCISE D
Solve in series:
d?y dy d? dy
1. x(l—x)——3 I -y=0 Z.ﬁw+xa+(x2—l)y=()
(Bessel’s equation of order one)
dy d2y
3. (x+a2+a8 +3:2 2 2y -0 4x1—x—— 1430 1 y-0.
( ) dx i ( ) 7i2 (1+3x)— I
Answers

1. y=A+Blogx) (x+2x2+3x%+4xt+ )+B I +x+a+a?+.)

2 4 2 4
x x x x
: -2 o | +Brllog x| -+ S — ..
2. y= Ax( od 2426 J Bx logx( 2 " 924 J
2
X 3 4
1 9 1 3
3. y=Ax 1+x—§x 5 +.o|+Blogx Qx+2x2—x*+ )+ BA -—x—-5x2—x>+..)

4. y=A+Blogx) 1222 +233+34x*+ ) +B(=1+x+5x2+ 112>+ ..).

Case IV. When Roots are Distinct, Differ by Integer and Making One or
More Coefficients Indeterminate

Let the roots be m, and m,. If one of the coefficients (suppose a,) become indeterminate
when m =m,, the complete solution is given by putting m =m,in y which then contains
two arbitrary constants.

Note. The result contained by putting m = m| in y merely gives a numerical multiple of
one of the series contained in the first solution. Hence we reject the solution obtained by putting
m=m,.
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SOLVED EXAMPLES

Example 13. Solve in series the differential equation: xy” + 2y’ + xy = 0.

Sol. Comparing the given equation with the form

2
%+ P(x)% + Q@) y =0, we get

Px) = % and Q) =1

At x =0, P(x) is not analytic x =0 1s a singular point.
Also, xP(x) = 2 and x? Q(x) = x2
At x = 0, since x P(x) and x* Q(x) are analytic x = 0 1s a regular singular

Let us assume
— m m+1 m+2 m+3
Y=a, X"+ a X"+ a, X+ a, a0+

(1)

d;
LA =may, ¥+ (m+ 1) a; &+ (m + 2) @y ™+ (m+ 3) @, v+ L
dx

%y _
dx?

Then,

m@m—1)a,x" 2+ @m+ 1) ma, x™ 1+ @m+2) (m+1)a, "
+(m +3) (m + 2) a;x™ + .
Substituting these values in the given equation, we get
x[m@m—1)a,x™ 2+ @m+ 1) ma, x™+ (m+2) (m+ 1) axm
+(m+3) (m+2) a; v+ ]
+2[mayxm 1+ (m+ 1) a, ¥+ (m+2) a, ¥+ L]

+x [a, x™ + a; x™ + a, ™2+ @, v+ L] =0

Now, Coefficient of x™ 1 =0
= m (m—1)a,+ 2m a,=0
(m?+m)a,=0

= m2+m= 0 (Indicial equation) | =+ a,#0
= m=0,-1
Hence roots are distinct and differ by an integer.

Coefficient of x™ =0
= m+1ma,+2m+1)a, =0
= (m+1) (m+2)a, =0
= (m+ Da, =0 [~ m+2=%0

. . 0
Since m + 1 may be zero, hence a, is arbitrary (or takes the form 6)' In other

words, a; becomes indeterminate.

Hence the solution will contain a, and a, as arbitrary constants. The complete

solution will be given by putting m =— 1 in y.

Now, Coefficient of 1 =0
= m+2)(m+1)a,+2(m+2)a,+a,=0
= (m+2)(m+3)a,+a,=0

_ )
YT m+2)(m+3)




Coefficient of %2 =0
= m+3)m+2a,+2m+3)a,+a, =0
m+3)m+4a,+a,=0

_ — Q1
T it 3)m+4)

Coefficient of x™™ =0

= m+4Hm+3)a,+2m+4Ha,+a,=0

= (m+4) @m+5>5)a,=-a,

= S— T—
U m+H(m+5)

= %o

S m+2m+3)m+4)(m+5)

Coefficient of £ =0
m+d m+4a,+2m+5Ha,+a,=0
(m+5)(m+6)a,=-a,

_ ay
Y5~ m+3)(m +4)(m +5)(m +6)

and SO on.

Substituting these values in eqn. (1), we get

) X2 _ a4 P ay o
(m+2)(m+3) (m+3)(m+4) (m+2)(m+3)(m+4)(m+5)

y=x" [ao-i-alx -

+ s x® +
m+3)(m+4)(m+5)(m+6)

2 4
y=ar {ao {1_ ad + x —}
m+2)(m+3) (Mm+2)(m+3)(m+4)(m+5)

x? x°
+a1 {x— + —H
m+3)(m+4) (mMm+3)m+4)(m+5)(m+6)

. xz x4 x3 x5
=41 -+ — .|t -t ...
Now,  (0),==x" 0| 1-35+7o=7 “1*"%37 2345

— a1 .
=x" [a, cos x + a, sin x]
Hence complete solution is given by

Y= =1
1 .
= y=;(a0005x+a1 sin x).

Note. All those problems, in which x = 0 was an ordinary point of y” + P(x) y' + Q(x) y =
0, can also be solved by Frobenius method as given in Art. 2.4.4 and explained in above illustrative
example.
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Ordinary Differential EXERCISE F

Equations
Solve in series:
d’ . dy o d? d
L 22— +dx—=+*+2y=0 2.1-) 22 s 14y-0
NOTES Y T Y G2 ¥ ™Y
d’y  dy
3. (1-2®)—-"=-2x—+n(n+1)y=0.
( x)de dx y
Answers
. x3 x5 x7
1. y=x2(a,cosx+ a, sin x) 2.y=a,(1-2x)+a, x—E—?+1—6—...
3. y:ao{l_n(n+1)x2+(n—2)n(n+1)(n+3)x4_”}
21 4!
+a1{x_(n—l;('n+2)x3+(n—3)(n—1;('n+2)(n+4)x5+”}
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6. DIFFERENTIAL EQUATIONS

STRUCTURE

Introduction

Legendre’s Function of First Kind P, (x)
Legendre’s Function of Second Kind Q, (x)
Solution of Legendre’s Equation
Generating Function for P, (x)
Rodrigue’s Formula

Recurrence Relations

Beltrami's Result

Orthogonality of Legendre Polynomials
Laplace’s Integral of First Kind
Laplace’s Integral of Second Kind
Cristoffel’s Expansion Formula
Cristoffel’s Summation Formula

Expansion of a Function in a Series of Legendre Polynomials
(Fourier-Legendre Series)

INTRODUCTION

. . . o d2y dy _
The differential equation 1-x%) —-2x—=+nmn+1)y=0 (D)
dx? dx

where n is real number, is called Legendre’s differential equation. This equation
is of considerable importance in applied mathematics, particularly in boundary value
problems involving spherical configurations.

Though n is a real number, in most physical applications, only integral values
of n are required. Also, equation (1) can be solved in series of ascending or descending
powers of x. The solution in descending powers of x is more important than the one in
ascending powers.

Let y= 2 a, x™ 7k
k=0

. 2 el
dy _ _ m—k-1 T N -k m—k-1a, x™ 2
then T A;O (m-k)a,x and 2 Z:O %
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Ordinary Differential d d?
Equations Substituting for y, i and ‘;} in (1), we get
dx dx
(1=2) Y m-k)m—k—1) a,x"*2-2c Y (m-ka,x" "
NOTES k=0 k=0 .
+nm+ 1) 2 a, x"*=0
k=0
or (m=k)(m—k—1) a,x" "= [(m-k)(m—k-1)
k=0 E=0
+2(m—k)—n (+ D]a, x™*=0
or Z (m-k)(m—Fk—1)a, xm"2— (m-k?—n?+@m-—k)—n]a,x"*=0
k=0 E=0
or 2 (m-k)(m—Fk—1)a, xm*2— 2 [(m—k—n)(m—-k+n+1) a,x"*=0.
k=0 k=0
Equating to zero the coefficient of highest power of x, i.e., x™, we get the indicial
equation

(m-n)(m+n+1ya,=0
whence m=n or m=-@+ 1) since a,# 0
Equating to zero the coefficient of the next lower power of x, i.e., ™!, we get
(m+n)y(m-n-1)a,=0ora, =0,
since (m + n) and (m —n — 1) are not zero for m =n or — (n + 1).
Equating to zero the coefficient of x™*, we get the recurrence relation
(m—-Gk-2)[m-k-2)-1]a, ,—(m-k-n)y(m-k+n+1)a,=0

B m-k+2)(m-k+1
n-m+k(n+m-k+1)

or a, = ap_o (2)

Since a, = 0, therefore, from (2), we get a, = a,=a,=...... =0.
Case I. When m =n, the recurrence relation (2) reduces to
- (m-k+2)(n-k+1D

T T k@n-krD  *?
) nn-1
Putting k=2,4,6, ...... , we get a, =— mao,
I n-2)(n-3) o = nn-1)(n-2)(n-3) 0. ete
4 42n-3) % 24.2n-1D@2n-3) O

Therefore, one solution of Legendre’s equation is given by

_ n_ o nn=1 5 nn-D®n-2)(n-3) , 4
i ao[x 20n-1 " | 24@n-1@n-3) } -

Case II. When m =— (n + 1), the recurrence relation (2) reduces to

_tk-Dusk)
k E2n+k+1) 2
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Putting k=24, 6, ..... , we get
_ (m+Dn+2)

“7 To@n+g
0 = (n+3)(n+4)a _(n+D(n+2)(n+3)(n+4) ot
1T 4Qn+5) 2 2.4.2n+3)(2n+5) Lo

Therefore, the second solution of Legendre’s equation is given by

v, =a, [x_n_l L (n+D(n+2) . (n+1)(n+2)(n+3)(n+4) "5 4 } ()
2(2n +3) 2.4.(2n +3)(2n +5)

LEGENDRE’S FUNCTION OF FIRST KIND P _(x)

When n is a positive integer and a,=

the first solution given by (3) is denoted by P, (x) and is called Legendre’s function of
first kind.

Thus,

_13.5..... 2n-1)| , nn-1) ,o nn-1).n-2)(n-3) ,_4
= x" - X"+ X -
2(2n -1) 2.4.(2n-1)(2n -3)

P,(x) is a terminating series. RHS is known as Zonal Harmonic. P, (x) gives
Legendre’s polynomials for different values of n such that P, (1) = 1.

Now, two cases arise:

Case I. When n is even:

No. of terms in the series within bracket = 3 +1

nn-D)n-20(n-3)...... 2.1}
"2.46.n{2n-D2n-3)..n+ D}’

Last term = (—1)"/2

Case II. When n 1s odd:

n+1
2

No. of terms in the series within bracket =

n-1
Last term = (-1) 2

nn-1)(n-2)n-3)...3.2
2.4.6..n-DIH{En-1D©@n-3)...(n +2)}

LEGENDRE’S FUNCTION OF SECOND KIND Q, (x)

n!
1.3.5...2n+1’

the second solution is denoted by Q, (x) and is called Legendre’s function of second
kind.

When n is a positive integer and a,=
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Ordinary Differential
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NOTES

Thus, Q, (¥ =

n! ol n+D(n+2) .
1.3.5...(2n+1) 2.2n+3)

n+1D)(n+2)(n+3)(n+4) B
2-4-(2n + 3)(2n +5)

It is a non-terminating series so there is no last term.

SOLUTION OF LEGENDRE’S EQUATION

Since y =P, (¥) and y = Q,, (¥) both are the solutions of the given equation hence the
most general solution is given by

y=AP, (x) +BQ, (x)

where A and B are arbitrary constants.

GENERATING FUNCTION FOR P, (x)

We shall show that P_(v) is the coefficient of h” in the expansion of (1 — 2xh + h?)"12 in
ascending powers of h.

ie., (1 —2xh + h?) 12 = 2 P,(x).n"
n=0

Using Binomial theorem,

13 135
1 390 229
1-pY2=1+=2t¢ t 13+
(- AR T T
1,185,135, 1.3.5...@1-1
't 4" 216 2.4.6..%

(1—2xh + hH)™ 12 =[1 - h@x— )2

1 1.3
= =h@2x—h)+=—"— p2 — )2+ -
1+2 (2x —h) 2.4h 2x—h)? +

h»2 (2x — h)"2

2.4.6...... (2n)
...... 2n-1
Now, the coefficient of A" in 23 456(?2 ) ) h* 2x —h)™ is
:1.3.5 ...... (Zn—l)(zx)n:1.3.5 ...... (Zn—l)(zx)n:1.3.5 ...... (2n—1).n
2.4.6...... (2n) 2™ (n)! n!
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1.3.5...... (2n-3) ) Legendre’s Differential
ht (2x =)™ is Equations Solutions

e 1.3.5..@n-8)
“2.46.. . @Gnog by

NOTES
_ 1.3.5....2n-3)

(”/ _ 1) 2n—2 . xn—2

2" 1 (n-1
_ 1.3.5...... (2n—3)(2n—1).n(n—1) 2
2(n)! 2n -1
_ 1.3.5...... @2n-1) n(r-1 .,
n! 22n-1)

Similarly, the coefficient of A" in

_1.3.5..... @2n-1) nn-1)(n-2)(n-3) L
n! '2.4.(2n-1(2n-3)
The coefficient of h” in (1 — 2xh + h?) 12 is given by

1.3.5...... 2n-1) o nn-1) xn_2+n(n—1)(n—2)(n—3) S e
22n-1) 2.4.2n-1D2n-3) e

n!
Thus, in the expansion of (1—2xh + h%) 2 P, (v), P,(x), P,(x), ...... P @), ...... are
the coefficients of h, h2, h®, ...... Chr respectively.

a_2ﬂm4ﬁ4@:1+Pg@.h+Pﬂ@.M+“ﬂ{g@yhmwuz}%Pz@%h”

The function (1 — 2xh + h?)71”2 is called the generating function for P, (x).

SOLVED EXAMPLES

Example 1. Show that
@ P(1)=1 @ P, (~x)=-1"P, (x) @) P/ (~x)=(—1)" "1 P’ (x).

Sol. We know that 2 A" P, (x) = (1- 2xh+ 1% V2 (D)
n=0

() Putting x = 11n eqn. (1), we get
2 RPP,(D=(1-2h+h%) Y2 =1-h)!

n=0
S R Y U Y

Equating the coefficients of h”, we have P, (1) = 1.
(1) Replacing x by (— x) in eqn. (1), we get

< n -1/
20 R"P, (- x) =1+ 2xh + h*) ™2 (2
Again, replacing h by (— h) in eqn. (1), we have

=

(—h)" P (x) = (1 + 2xh + h?)~12
n=0
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or

Y D AP () = (1+ 2xh + h?) 12 (3
n=0

From 2 and (3), 3 A"P, (-x)= ¥ (~1/'A"P, (x)

n=0 n=0
Equating the coefficients of h", we have
P (—x)=C 1P, ().
(tit) We have, Px)=D"P (x) | Proved in (it)
Differentiating w.r.t. x, we get
P (0= 1D"P
- P/ (—x) = (- 1)"*1 P ().
Example 2. Show that:

2n!

@) P,,(0)=( 1" 2 f @) P, . ,(0)=0.

Sol. We know that 2 R" P, (x) = (1- 2xh + h?)~ V2

n=0

Putting x = 0, we get 2 R P, (0) = (1+ h?)~ V2
n=0

Ll L8 gy 135 @D
2" 2.4 2.4.6....(2r)

(1) Equating the coefficients of h?" on both sides, we get
1.3.5...... (2n—1):(_1)n 1.2.3.4...... (2n-1)2n)

p = (=1)"
on () = CD" =25 (2n) [2.4.6....2n0)°
B " (2n) — (1 (2n)
B [2"1.2.3.....n]% 2% (n.1)?

(i1) Equating the coefficients of h?"*! on both sides, we get P, .,(0) =0, since the
right-hand side contains only even power of h.

Example 3. Prove that:

= 1 . i
mé&w=%% i) P, (-1)= (-1
Sol. We know that,
(1—2ch+hd 2= Y h"P, () ()
n=0

(@) Put h=11n (1), we get
(1-2c+ )= Y P, ()

n=0

1 -
= -V P,
\J2-2x ’;0

(1) We have already proved in example 1 (i) that
P, (-9)=(C1D"P, ()
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Put x = 1 in above relation, we get

P, D)=D"P 1)=D" | P()=1
Example 4. Prove that:
1-2° -
= @Cn+1DP,2",
(1-2xz +22)%? ,Z"o
Sol. We know that
(1= 2z + 29 112 = 2 2" P, (x) (D
n=0
Differentiating (1) w.r.t. z, we get
- % (1—-2zx + 2922 (22 —-2x) = nz" ' P, (x)
n=0
= (x—2) (1 —2zx+ 222 = Z nz""'P, (x) (2
n=0

Multiplying both sides of eqn. (2) by 2z, we get

2 (x—2) (1-2zx +29) 2= Y, 202" P, (x) e
n=0

Adding (1) and (3), we get

(1-22x+29)°2 Q2ex —222+1-2zx +29) = Z @2n+1)z" P,(x)

n=0

1- 22 -
= @2n+1)2z"P (x)
= (1-2zx + 22)%2 ,;0 "

Example 5. Prove that: 1tz 1 2 (P, +P, ;)z".

zAl-2xz+22 %2 ;0

Sol. RIS = i P,z" + i P, .2"

n=0

n=0
oo 1 oo
n n+1l
Y RN o
4
n=0

N
(=}

- 1
Y P2" to P+ PR P+ 4Pt )

N
(=}

- 1
= P2 +— P+ PRl + Pzt P2+ .+ P2+ | v Py=1
n=0
- 1 1 1) + 1
=Y Pz"-=+= ) P 2" :(1+—) Y P2t -= e
1+ 1 1 1
LHS:—Z__:(l-{-—j (1_2x2+22)71/2__
zy1-2xz+2> ? o z

NS L, 1
:(1‘1‘;)2 z Pn_; (2)

Hence the proof. | Since LHS = RHS
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Ordinary Differential Example 6. Prove that:

Equations ‘ , nn+1)
WP ()=—"F

. , B ., nn+1 ‘ , B . nn+D
NOTES @) P'(-1)=(1) ].T Or P’'(-1)=(-1) ].T.
Sol. Legendre’s differential equation is
d*y  dy
(1-2x9 W—%c% +nn+1)y=0
y =P, (¥) is a solution of it. So,
1-) P/ @) —20P/ () +nm+ 1P, x)=0 (1)
@ Putx=1in(1), -2P/(H)+nm+1HP (1)=0
1
= P/ (1) = —n(n; L p =1
(1) Put x =—11n (1),
2P/ (1) + n(n+ 1) P (1) =0
= 2P/ - +nm+1) D=0 | See Ex. 3 (it)
N 2P (1) = —n(n + 1) (~1)"
Case L 2P/ (1) = (=) . n(m+ 1) )" = (= D™ n@n+ 1)
- P/ (1) = (1)1 ”("’T”)
Case II. 2P/ (1) = (-1)L . n(m+ 1) . )" = (1) n+ 1)
1
= Pr: (_1) — (_l)n—l ) n(nTH

RODRIGUE’S FORMULA

n

The relati P (x) =
e relation NEY) 9"l de”

(x? — 1) is known as Rodrigue’s formula.

d
To prove it, let v=(?-1)"then v, = d—; =n@ -1 2x

Multiplying both sides by (x* — 1), we get
(% — Dv, = 2nx (&% — 1)" = 2nxv

or (1 —xHv, + 2nxv =0
Differentiating (n + 1) times by Leibnitz’'s theorem, we have
[(1— XN, 40 + (1 + D(= 22000, , 1 +(n;—'1)n(_ 2)04 +2n [ww,,, +(+1)v,]=0
or (A=, - 2w, Gt Dy, =0
or (1 -1 d;ivzn) o d(v,) Sn@ e, =0

which is Legendre’s equation and v, is its solution. But the solutions of Legendre’s
equations are P, (x) and Q, (x).

n
Since v, = d—n (x2 = D" contains only positive powers of x, it must be a constant

multiple of P_(x).

202  Self-Instructional Material



1.e., v, =cP, (x)

n

or P (¥) = —— @ —1)"
X
= [(x— D" (x + 1)"] ..(1)
X
n n-1
= (x _ l)n dxn (x + l)n + nC1 ) "/(x _ l)n—l dxn_l (x + l)n o
T Ay
dx"
dn—l
=@-D"n!+ "C .nx-1"1. —5 (D +@x+1)"n!
X

=n!(x+ 1"+ terms containing powers of (x — 1)
Putting x = 1 on both sides, we get
cP. (H)=n!.2" or c¢=2"n! since P (1)=1
Substituting in (1), we get

P — 2 _ 1)"
() 2" n! dx" (v )
Puttingn=0,1,2,3, ...... in Rodrigue’s formula, we get Legendre’s polynomials.
Thus
P,x)=1
1d,,
P .(x) = Ea(x -D=x
P __d_z(x?_l)z_ld_2 4924 1) =1 (32_1
721 o Tga © AT DT G0 D
> 5 3 1 48
_ 13 =~ 6_ 0.4 2 _
P,(x) 7 @) d (x ) 18 o (% —3x* +3x2 - 1)
=1 (5x® — 3x)
1
Similarly, P,(x) = 3 (35x* — 30x% + 3)

1
P.(v) = 8 (63x° — 70x° + 15x)

1 6_ ¢ 4 2
Py(x) = s (231x° — 351x* + 105x* — 5) etce.

SOLVED EXAMPLES

1
Example 7. Show that x* = 35 [8P, (x) + 20P, (x) + 7P, (x)].

P, (¥) =4 (35x" —30x2 + 3)
P,(x) =34 (Bx?—1), P (x) =1

Sol. We know that

1 1
35 [8P,(x) + 20P,(x) + TP, (x)] = 35 [35x% — 30x% + 3) + 10(3x2 — 1) + 7] = &%,
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Example 8. Express f(x) =x° — 5x% + x + 2in lerms of Legendre’s polynomials.

Sol. We know that

3
x=ZP += x
X 3(36) 5

o] b

1

flx) =

o] o

[+ Py) =3 B3x?-1)

P (x) —% P, (x) +

ol b ot o

1
Example 9. Prove that: j P, (x)dx=
-1

Sol. We know by Rodrigue’s formula, P (x) =

Integrating, we get

1 1 1 gn
P dx =

.[—1 n (%) dx 2”n!-[—1dx”

1 |at

2%l dx

1 1
When n =0, .[_1P0(x) dx = j_lldx =9

0, n#0
2, n=0|"

P,(x) = 5 (5x* — 3v)

2 3 92 8

2 1] 8
Py (x)-5| 2Py (1) +— |+ —x + 2
3(3C) |:3 z(x) 3:| 5%’

¥=2P,@+3]

8

1
—X +—
3

5

10 8 1
Py (x) — 5 Py () + £ P () + 2 Py(v)

[~ x=P, () and 1=P (v)]

1 J"
n!dx"

_ (- D")
2

(@ — 1" dx
1

(x? - 1)"] =0
-1

| Pow)=1

Example 10. Express 4x° + 6x% + 7x + 21in terms of Legendre’s polynomials.

Sol. Let

4P +6x2+Tx+2=aP,(x) +BP, () +yP, () + &P, (x)

(1)

_ (5x3
=q

2

2
‘3’6J+B(3x2‘ 1] Fy @+ EQ)

= 5—ax3+3—6x2+(y—3—a)x+(§—EJ
2 2 2 2
Equating the coefficients of like powers of x, we get
50 8
?—4 = Oc—g
3p
= — :4
6 9 B
7= Ll = 7= E: _ 47
L T T
Z:F,—g = 2=£(-2 = £=4

Hence from (1),

5 5 ., 8 47
4x° + 6x +7x+2—gP3 (x)+4P2(x)+? P, (x) + 4P, (x).



Example 11. Prove that:

1 1 1 1 1 1 1
r(-gen(g)m (G g)ra(g) (5 ()
Sol. We know that,

Y h"P, (x)=(1-2hx + A" (1)

n=0

1
Put x = 2 in (1),
N 1
Y h"P, (—):(1—h+h2)1’2 (2
2
n=0
Putx=—=in (1
u,x——zln(),

- 1
2 h" P, (— —j =1 +h+h?)1? (3
n=0 2
Replacing h by h? in (3), we get
2 B2n P, (_ %) =1+ h2+ h%H 12 =[(1 + h2)? - 2|12
n=0

=1 +h2+h)yY2 1 +h*-h)12
=Y n"P, (‘%)Zh” P, (%) | From (2) and (3)
n=0 n=0
& 1 1 1 1
PP |- == -2 _i)p g g2t _1
N nzo n( 2) [PO( 2J+hP1( 2J+ +h P2n_1( 2J
+ p2n P2n (_1J+ }
2
1 1 . 1 . 1
[PO(EJ hP1(§J+ ...... +h? 1P2n_1(§J+h2 Pzn(E}..}

Equating the coefficients from both sides of the above equation, we get the
required result.

Pn(—%}Po[—;]-%n[é}n(—;}@n_l(;} ...... +P2n[—§JPO[§)

Example 12. Let P (x) be the Legendre polynomial of degree n. Show that for

any function f(x), for which the nth derivative is conlinuous

1 (_ l)n 1 2
[ 0P, dx= [ oo de
-1 2" n! -1
1 ! 1 4", . Using Rodrigue’s
Sol.| fwP,wde=] /. S @A [l
- 1 ! d" 2 n
- 2nn!j_1f(x)‘ WD) d
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1
1 dn—l 9 1 dn—l 9
= () (" ="} —| . fx) (x*-1)" dx
2"n ! Hf dx" ! }_1 I‘lf dx" !
| Integrating by parts

— 1 1 ’ dn_l 2 n
- [o-j_l F@ g =D dx}
_(=Dt e, dth s
- 2”n!'[—1f ()5 (% ~1)"

D%,
2" n! -[—1 17

n-2
d — (x? = D" dx

I | Integrating by parts again
X

Integrating by parts

(_ 1)n 1 n n
T on nl j_lf( ') (* - D" dx. (n - 2) times

RECURRENCE RELATIONS
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nP (x)=(2n-1)xP_ (x)-(n-1)P,_(x)

Or
(n+1) Pn+1 (x)=(2n+1) x Pn(X) -n Pn—1(X)
We know that,
(1—2xch +h2 2= Y h"P,(x) (D

n=0
Differentiating both sides w.r.t. h, we get

=

1
-5 (1 —2xh + h?)°2 (2h — 2x) = 2 nh™1P (x)

0
= (x—h) (1 —2xh +h») 2= (1 —2xh + h? 2 nh" P, (x)
0
- —h) >, B"P () = (1 - 20h + h?) Y, n A" 'P, ()
0 0

Equating coefficient of ™! on both sides,

xP,,@-P, ,@=nP x)-2xm-1)P,  (x)+0-2)P, , )
= nP@=Cn-HxP, , x-0-1)P, ,
Replacing n by (n + 1), we get the other form.

nP_(x)=xP (x)-P' _ (x)

We know that, (1=2hx+ h?12= Z A" P, (x) LD

n=0



Differentiating both sides of (1) w.r.t. h, we get
1 S _
— 5 (1= 2xh + W2 (- 20+ 2h) = Y nh" P, (x)
0

= (x—h) (1 —2hx + h?)=2 = 2 nh" 1P, (x) (2
0

Differentiating both sides of (1) w.r.t. x, we get

1 C b
— 5 (L= Zhe+ W9 (- 2h) = Y P )
0

= (x—h) 1 —2hx+ h?)>2=@x-h) 2 A" P, (%) ..(3)
0
Equating eqns. (2) and (3), we get
3 nh" 1P, @) = @—h) ), AR @)
0 0

Comparing the coefficient of ! on both sides, we get
nP, (x)=xP/ (x)-P

2n+1)P _(x)=P' ., (x)-P' _ (x)

n+1

From Recurrence relation (1),
@n+1DxP @=0m+1HP , @+nP,  (x
Differentiating w.r.t. x, we get

Cn+D)[xP/ @®+P W=+ DHP ,@+nP, (¥ (1)
From Recurrence relation (2), xP/ @=nP (x)+P ()
From (1),

Cn+ )P E+P, ,@+P @W=0+DHP ,@+nP, | (x
Cn+D)m+DHP,@=@0+DHP ,@-n+)P ()

=
= @+ HP@=F, @, @

(n+1)P_(x)=P' . (x)=xP'(x)

n+1

From Recurrence relation (3), we have

En+1HP =P @-P ;@ (1)
From Recurrence relation (2), we have
nP,®=xP (x)-P, , ® ..(2)

Subtraction yields, m+ 1) P (x)=P . (x) —x P (x)

(1-x%) P’ (x) = n[P,_,(x) - xP (x)]

From Recurrence relation (4), we have

P @) —xP | (x)=nP, (x) ..(D
From Recurrence relation (2), we have
xP @-P, ,(®=nP, (x ..(2)

Multiplying (2) by x and subtracting from (1), we get
A-x)P " (@)=nl[P, , (x)—xP, (¥)]
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(1-x°) P',(x) = (n +1) [xP (x) - P,,(x)]

Recurrence relation (1) may be written as

(n+1+n)xP () =n+1)P , (x)+nP, (%)
= @+ DxP (x)+nxP, x)=n+1)P , @+nP,  (x)
or (n+1)[xP (x) =P @] =n[P, ;(x) —xP, (x)]
=(1-x)P (v | Using recurrence relation (5)
A-x)P '(W=mn+1) [xP (x)-P,,, @]

BELTRAMI’S RESULT

(2n+1)(x*-1)P ' =n(n+1) (P, —-P )

From Recurrence relation (5), we have

nP, ,—xP)=Q10-xH)P/ (1)
From Recurrence relation (6), we have
m+1)@P, P, )=(1-x9)P/ (2

From eqn. (1), nP  —nxP =1-x%P/
nP, ,-(1-x*P,

= xP, = ..(3)
n
1-x3) P,
From eqn. (2) xP, —-P = A=x) P,
n+1
2y pr
= xp, =P, + L= )Py e
n+1
From (3) and (4),
nP, 1 —(1-a")P; (1-x*) P,
n Sl n+1
_(+DP,  +(1-x)P;
B n+1
= m+H{nP,_ —A-xHPY=n{n+1)P _ +1-x)P}
= Cn+1)A-2)P'=nm+1){P_,-P 3}
= @Cn+1) @-1)P =nm+1){P ., —-P .}

ORTHOGONALITY OF LEGENDRE POLYNOMIALS

We shall show that

1 0 , ifm#n
Jle(x)Pn(x)dxz 2

, ifm=n
2n+1

208  Self-Instructional Material



Case I. When m #n
We know that P, (¥) and P (x) are the solutions of the equations
A-2du” - 2xu'+m@m+ Du=0 LD
and A—-aH” —2x0" +n(n+ Hv=0 (2
Multiplying (1) by v and (2) by u and subtracting, we get
1—2%) Wv—1v"u) - 2x@v—-vu+[mm+1D)—n@m+D]uw=0

d
or dx [(1=-xHWv—vuw]+m-n)m+n+ Duv=0

or m—-—mm+m+1uv= % [(1-x%) @W'v—vw)]

Integrating w.r.t. x from —1 to 1, we get

1
m-m)m+m+1) '[_11 uv dxz{(l—xz)(u’v— v’u)} =0
-1

1

Hence J P, (x) P, (x) dx =0, since m # n.
-1

Case II. When m =n

We know that (1 —2xh + h?)"12 = Z h"P, (x)

n=0
Squaring both sides, we get

=

(1—2xh+h?) 1= 2 [h”Pn(x)]2 = 2 R [Pn(x)]2 +2 2 2 pmin Pm(x) Pn(x)

n=0 n=0 m=0 n=0
(m#n)

Integrating w.r.t. x between the limits —1 to 1, we have

N ! n N S 1 m+n _ 1 dx
nZOJ‘_th [P, (x)]? dx + 2 2:0 ;0 Lh P (x)P, (x)dx—j_l—l_th+h2

(m#n)

= 1 1 dx
h2n P 2d — s
. Z‘o'[-l ol d -[—1 1-2xh + h?

| Since other integrals on the LHS vanish by Case l as m # n

1
=_ ih{log (1-2xh + hz)}_1 = —% [log (1 —h)? —log (1 + h)?]

- % [log (1 + h) —log (1 — h)]

1 R* h* At R* h® At
=—||lhA-—+——-——+...... At —+—+—+.....
h 2 3 4 2 3 4

2 h® R
=—|lh+—+—+......
h 3 5
e on 1 5 B h2 h4 h2n
or z‘oh j_l[Pn(x)] dx—2(1+?+?+ ...... to
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Ordinary Differential Equating the coefficients of h?" on the two sides, we get
Equations

1 2
P 2 dx = ‘
J.—l[ n (] dx 2n+1

NOTES

LAPLACE’S INTEGRAL OF FIRST KIND

P (x) = 1j§ {x ++/x% —1cos 0}" do
T

We know that,

'[n do T asb ()

0 aJ_rbCOSQ):\/aZ_b2

Replace a by (1 —xz) and b by z \/xQ -1

A -b2=(01-x2)?-22(x2-1)=1—-2xz+ 22

Then (1) becomes
J‘“ do T

0 l—xziz\/xQ—lcosq) \/1—23cz+z2

n d
= J 0 =m(l — 2xz + 22) 112
0 1—z{x1\/x2 -1 cos ¢}

Let z{x Ty/x% =1 cos ¢} = ¢, then

T d¢ 3 o "
.[0 1_t‘“’§02 P, (@) @)
If | t | <1, then 1-0'= Zt”
n=0

n =
F 2), [2" (x Fyx2 —1cos 0} 1do=n Y 2" P, (x)
rom (2) Jo ’;0 ’;0
Equating the coefficient of z* on both sides, we get

P (x)= %Jon {x +/x% - 1cos ¢}" do.

LAPLACE’S INTEGRAL OF SECOND KIND

1 do
P.(x)=— .
T b {x+ \/x2 —1cos ¢}™!
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We know that

J‘“ do T
0 aJ_rbCOSQ)_\/aZ_b2

;a>b (D)

Put a=xz—1and b = z4/x? — 1 so that
a?—b*=(xz—-1)?-22(x2-1)=1-2xz + 22

With above substitutions, (1) becomes,

J‘“ do _ i
Oxz—lirz\/xz—lcosq) \/1—2xz+z2
T T w 1
= =—>» —P,(x)
1 1)2 Z,;)Z" i
. 1_2()“()
z z
n do T -
=— P, (x)
'[0 z{xir\/x ~lcospl—-1 2 +1,§
= JnﬂZLiP(x) (2) wheret=2z{x+ \/x% -1cos ¢}
0 t—l zn+1n=0 n 4 J
T do n1(, 1"
Now, LHS = —zj —(1——) do
0 1 0t t
f1-)

1
it
t

n 1 1 1 T 1
<1,then LHS= —(1+Z+t_2+ """ to e qu) :jo ; JURS] do

1
d
-[ 1120 zn+1 .’JC+ [x2_1c0s¢}n+l q)

1
Now, comparing and equating the coefficients of a1 on both sides of eqn.(2),
we get
1 d
P”(x) - .[ ° +1°
Y0 g+ \/ x“ —1cos ¢0}"

CRISTOFFEL’S EXPANSION FORMULA

P,(x)=@2n-1)P, (x)+(2n-5)P, ,(x)+(2n-9) P, .(x) + - + Last term.

3P;; when niseven
where Last term =

P,; whennisodd|’
From Recurrence relation (3), we know that,
(2”/ + 1) Pn = P’n+1 - P’n—l
= PP ,=C@n+1)P +PF (1)
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Ordinary Differential Replace n by (n — 1), then

Hauations P'=@n-1)P  +P )
Now replace n by (n — 2) in (2), we get
NOTES P ,=@n-5P . +P , ..(3)
From (2), P/=@n-1)P, ,+@n-5P, ,+P ,

Proceeding in this manner, for the last term, two cases arise:

Case I. When n s even:

Py =3P, +Pg=3P, |- Py=1and Pj=0
S0, last term = 3P,
Case II. When n is odd:
P;=5P, + P/ | P,=x .. P{=1=P,
=5P,+ P,
S0, last term =P,

CRISTOFFEL’S SUMMATION FORMULA

The sum of first (n + 1) terms of the series

i @Em+1DP ©) P, ()= n+1D[P,,; ®P,(»-P,(x)P, (]
m=0 x -y
By Recurrence relation (1),
@m+ 1P @) =m+ 1P . @) +mP, (¥ (1)
Similarly, @m+1) yP, ) =(m+ 1P, () +mP, () ..(2)
Multiplying (1) by P, (y) and (2) by P, (x) and then subtracting (2) from (1), we

get

CEm+1)@-y»P P )=m+DHP . ®)P »+mP ,®P, ¥
—m+1)P, P, x)—mP, (P, (x

=m+1[P P »-P 0P, ]
-m[P P, ®-P P ]

Put0, 1,2 3, ...... , n.for m in succession, we get
(x—y) Py() Py(y) = P, (x) Po(») — P, () Py(v)

3(x—y) P (@) P,(») = 2{Py(x) P,(y) - P, (») P, ()} —{P,(») P, (¥) - P, (x) P, ()}
5(x —y) Py(x) Py(y) = 3{Py(¥) P, () — Py () Py(0)} — 2{P, () P, (v) - P, (x) P, ()}

@n+1) @-»P,®P,6)=0+1) [P, ®P,6 P, )P
-n[P,_ P ®-P &Pl
Adding simultaneously, we get
(x ) [Po@) Po@) + 3P, () P, () + 5P,(x) Py() + -+ + @n+ 1) P (x) P, 0]
=+ D[P P ®»-P, 0P ®]
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= Py(x) Py(») + 3P, (x) Py(y) + -+ @n+ 1) P, (x) P, () Legendre's Differential

Equations Solutions

1
= [” i ] P, P,6)—P,,,0) P, ()}
x—y

Sum of first n terms of the series NOTES

(n+D{P,,(x) P,(y) - P, , 1(y) P, (x)}
xX—y '

Y @mn+1)P,®P ()=
m=0

EXPANSION OF A FUNCTION IN A SERIES OF
LEGENDRE POLYNOMIALS (FOURIER-LEGENDRE

SERIES)
The orthogonal property of Legendre polynomials enables us to expand a function f(x),
defined from x =— 1 to x = 1 in a series of Legendre polynomials.
Let f@= Y, P, =aP ) +a,P,@+a,P,®+. .. ..(I)
n=0

To determine a,, multiplying both sides of (1) by P, (x) and integrating w.r.t. x
from —1 to 1, we have

1 B 1 9 B 2
j_ f@P,@dx=a, j P@dx=a, [Zn - J

1
- a = (n + %) j f@P, (@) dx

Expansion of f(x) given by (1) is known as Fourier-Legendre series.

SOLVED EXAMPLES

1
Example 13. Prove that: J 1(1 -x*)P, P, dx =0
where m and n are distinct positive integers and m # n.

1
Sol. j 1-x2)P. P/ dx
-1

1
= {(1_#)3,; Pn:| -j_ll P, [%{(1—33)3,;}} dx
-1
| Integrating by parts

1
[ BT,

1
=_ J an{— m (m+ 1) P }dx | From Legendre’s differential equation

1
:m,(m,+1)J1Pandx —mm+1) . 0=0
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2n(n+1)
Cn-DCn+1D2n+3)°

1
Example 14. Prove that: J_ 1x2 B,_;x)P  (x)dx=

Sol. Recurrence relation (1) is

m+1HP _,=Cn+1)xP, —nP,
= @n+1D)xP,=n+1)P ., +nP | ..(D
Replacing n by n + 1 and n — 1 respectively in (1), we get
@n+3)xP,, =m+2)P ,+(+1)P, ..(2)
@n—-1)xP ,=nP, +(n-1)P, , ..(3)

Multiplying (2) and (3) and integrating within limits — 1 and 1, we get

n+tl™ n-1 7

oy
@n+3) @n—1) j &P P, dy
1 9 1 1
=nn+1) j 1Pn dx +nn+2) J P, P, ,dx +@n*—1) J IPn_g P, dx
_ 4 B

1
+m+2)(n-1) J_ 1Pn—2 P odx

2
=nn+1). [Using orthogonal properties]
2n+1
1 2n(n+1)
2
P..P _,dx= )
-[—lx e D@n - D@2n + 3)
E le 15. Prove that: J1P2(x)dx— !
xample 15. Prove that: | Fy il
1
Sol. We know that by orthogonal property, '[ Pf(x) dx = 2
-1 2n+1
0 1 9
P2(x) d +j P2(x) dx =
= .[-1 n (%) dx 0 w (%) dx 2n+1

Put x = — y in first integral, then dx = — dy

0 1 9
7_[ P,f(—y)dy+_[ P2(x) dx =
1 0 2n +
- JlPZ(—x)dx+'[1P2(x)dx=
o " o " 2n+1
1 1 9
_ 1\2n p2 2 _
- jo( 1 Pn(x)dx+j0 Py () dx ==
1
P2(x) dx =
= 2.[0 ndr =g
1 1
P2(x) dx =
= J, Pi@dx =g

Example 16. Prove that:
2t"
2n+1

1
j 1P” @) (1-2xt+¢7)"* dx = where n is a positive integer.



1
Sol. j PG (1-2xt +0%) " de

1
= j P,(x) [2¢" P, () d
All other terms vanish since

1
Zt’LJ P2(x) dx 1
1 ijm(x)Pn(x)dxzo;min

2

=" . .
2n +1

| By II orthogonal property

1
Example 17. Prove that: J x™P,(x)dx=0, if m <n.
-1

(x* = 1" dx (Using Rodrigue’s Formula)

1 1 1 d"
1. P = "
So J_ & (%) dx J_ X 51 do

1 J‘l m ar
— x x2_1 n d%’
2"nlJd-1 dx" ( )

Integrating by parts, we get

:znn![{x e } j mx™ ?( ~ 1" dx
— m 1 m-1 dn_l n
_O_Z”n! K ST (x? — 1" dx

1 n-2
Similarly, j 2™ P, (x) dx = (- 1)2Mj m-2 ; — (21" dx
- x"

Integrating (m — 2) times in all, we get

“D.1p dn
1= pn 22D |

2"n! -ldx"™™ (e~ Drdy

CE L3

2" n! Jo1dx" ™™

(_ 1)m m| |: dn—m—l 9 n:|1
-1

2" n! dxn~m1

P.,-P,._
Example 18. Prove that: ———"—— J P, dx+ec.
2n + 1

Sol. From Recurrence relation (3), we have
P - =@2n+ 1P,

Integrating both sides w.r.t. x, we get
Poi1—-P,

_ jP dx+ec.
2n+1

Example 19. Prove that: xP/=nP +(2n-3)P ,+(En-7)P , +-
Sol. From Recurrence relation (2),
xP/=nP, +P/’, (D
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From Recurrence relation (3),
P/, =@n+1HP +P’ .. (2)

Replacing n by n — 2 in (2), we get
Pn’—l = (2”/ - 8) Pn + Pn’,g (3)
Replacing n by n — 4 in (2), we get
(4

Pn’—B = (2”/ - 7) Pn—4 + Pn’—5

From (1), (3) and (4),
xP/=nP +@Zn-3)P, +@2n-7P, ,+-
1 , 2n
Example 20. Prove that: j xB, P, dx = ‘
-1 2n+1

Sol.
1 1
j (P, (P))dx = j (BInP, +(2n-3)B, 5 +(20 -, +-ldx

1 1 1
= j 1nP,? dx +(2n —3)J ) PP _,dx+(2n —7)j ) PP _,dx+--

| Using orthogonal property

=n. —+ —+ —+ ...
noopg 100

_ 2n
2n +1

1 2n(n+1)
Example 21. Prove that: [ (x* 1) P, P, dx= ‘
xample rove tha _Z(x )P,.; P, dx on+ 1) (@nsd)

Sol. From Recurrence relation (5),
n®, _,—xP)=(01-x%)P’

@ -1 P =n@EP,-P, ) (D)

=
1 2 1 2 ’
Now, [ 2-DP,.,P;ds = [ (- DP)P,, dx
1
1dx_nJ‘_1Pn_1Pn+1dx

1 1
- j nGP, ~P,_ )P,  dx=n j (%P, P,
1
o) ‘ j PP, ., dx=0
-1

1
=n J‘ 1xPn Pn+1 dx
From Recurrence relation (1),
@n+1D)xP,=(n+1)P ., +nP |
b - (n+DP,, ;+nP, 4
- = @n+1)
1 1{(n+DP, _,+nP _
2 ’ _ n+1 n-1

From (2), J_ 1(x -DP P dx=n j_ 1[ on + 1 ] P

dx

n+l

nn+1 (1 _, n?
et LBt gy [ P P s
B nin+1) 2 L 0= 2n(n+1)

T @2n+)D 2+ D+1 S 2n+D2n+3)°
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- +1 Legendre's Differential
" ( 1+ xJ Equations Solutions

X 1
Example 22. Prove that: 2 — P,(x)= El e

Sol. We know that NOTES

2 " P (x) = (1 — 2xh + h?)"172

Integrating both sides w.r.t. h from 0 to h, we get
dh dh

—P ()=
nzn+1 Jﬁ 2hx + h* -[J(h 02 +(1-x2)
. (h-x)+yh®—2hx+1
= log
1-x
Putting h = x in the expression, we get
S Jl—xz] 1 (1+x)
. =—log| —|.

x
2 n+1Pn(x)—log( = 2

n=0

if x| <1

Example 23. If f(x) = g T éiiig} show that:

flx)=— Po (x)+— Pl(x) s P2(x) - P (%) +.
Sol. We know that
- 1
flx) = Z—:o a,P,(x) ..(1) wherea, = (n + Ej j_ ) f(@)P, (x) dx

(2’”1)[] f(x)P(x)dx+j f(x)P(x)dx}

(2n+1JJ f) P, (x)dx (2

Putting n =0, 1, 2, 3, 4, ... successively in (2), we get

1
1t 1( «? 1
%ZEL’CPO(W’CZE[? 1
0

1
x3

1
“1:§JOxP1(x)dx:§[? -
0

5 1 51 (3x2-1 5
a2:§'[0xP2(x)dx=§'[0x 5 de=1—6

7! 7 (5x°-3
aSZEJ‘OxP3(x)dx=§J‘Ox %} dx=0

1 1 4 _ 2 _
afg-[o x Py (x) dng'[o x(35x ng +3de=3—§ and so on.

Putting these values in (1), we get

1 1 5 3
f(x) = Z PO(.’)C) + E Pl (.’)C) + 1_6 Pz(x) - ﬁ P4(x) + -
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Ordinary Differential Example 24. Compute the first three non-vanishing terms in the Fourier-Legendre

Equations series over the interval (— 1, 1) of the function
1
f(x) = , |x|<e .
NOTES 0 , e<|x|<1
Sol. Let the Fourier-Legendre series be
fo) = Z a, P, (x) (1)
2n+1 2 +1
where, a, =— j F) P, dx = =2 [ £GP, ) dx o)

Putting n =0, 1, 2, 3, ... successively in (2), we get

1 1 1 1
a, = —f —Po(x) dx = I (2¢) = 5 [ Pp=1

= —J —Pl(x)dx = EJ‘S xdx =0
4ed-¢
Therefore a, = 0 for all n odd.

Now, =—j —Pz(x)dx——J (336 — deZ%(xS—xJ

5 5
. a2:—(83—8):1(82_1)
Also, _ 2 J‘ —P4(x) dx
€ 4 — 2 E
:i 35x% —30x° +3 dx _ 9 7x% —10x2 + 3x
4e J- 8 32¢ -
9 5 9 L
andsoon ......

Hence the Fourier-Legendre series 18

f(x) = O(%) +— (82 —1) Pyx) + —(785 — 1062+ 3) P, (1) + -

Example 25. Prove that: 2 @r+1) P, =P/ +P
r=0

n+l°

Sol. From Recurrence relation (3), we have

@En+1)P =V . -P
Puttingn =1, 2, 3, ..., n, we get
3P, =P,/ P/
5P, =P, -P/
P,=pP/ -P)/
@n-1pPb, =P -P

(2”/ + 1) Pn = P’n+1 - P’n—l
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Adding simultaneously, we get Legendpre s Differential
3P, + 5P, + TP, + -+ @2n+1)P =P  +P/—~P/-P/ Equations Solutions
=P tP,-1=P,+P P

= P +3P,+5P,+ TP, +—~+@n+1)P =P, +P’

NOTES

n

= Y @r+DP, =P, +P.

n+l
r=0

Example 26. If P (x) is a Legendre polynomial of degree n and o. is such that
P (o) = 0. Show that P, , (o) and P, (o) are of opposite signs.

Sol. From Recurrence relation (1), we have
@n+1DxP,x)=m+ 1P, (x)+nP,  (x) ..(D
Given that P (o) =0 ..(2)
Put x = o in (1) and using (2), we get
Cn+Do.0=@m+1)P (0)+nP, ()
P,.q1(0) _ n

= Pn_l(oc)__n+1 ~.(3)

Since n is a positive integer so RHS of (3) is negative. Hence (3) shows that
P .,(o) and P (o) are of opposite signs.

Example 27. Show that all the roots of P (x) = 0 are real and lie between
~1and 1.

Sol. Let =2 -D"=x-D"(x+ 1" (D)

From (1), we see that f(x) vanishes for x =1 and x =— 1 hence by Rolle’s theorem,
/’(x) must vanish at least once for some value o of x lying between — 1 and 1.

From (1), we have
ff@=nx-D"T@x+1D"+nx-1D" (x+ D!
which shows that f’(x) vanishes at x =1 and x = —1.

Again, we have already shown that f’(x) vanishes at x = o. Now applying Rolle’s
theorem to f ’(x) two times, we conclude that f “(x) must vanish at x = § between
o and 1.

Proceeding in this manner, we conclude that f®(x) = 0 must have n real roots
lying between —1 and 1.

By Rodrigue’s formula and eqn. (1), we have

2" n! "

Hence we see that P, (x) = 0 must have n real roots lying between —1 and 1.

P, () =

1
Example 28. Prove that: j P,dx =P, ,— P, )/(2n+I).

Sol. From Recurrence relation (3), we have
En+ 1P (x)=P . (x)-P

1 d
= P (x)= ontlde [P, ,(x)—P, ()]
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Ordinary Differential Integrating w.r.t. x between limits x to 1, we get

Equations )
! 1
J‘x Pn(x) dx = m [Pn+ l(x) — Pn_ 1(35)]
NOTES
- 2n +1 [{P'H'l(l) - Pnfl(l)} - {Pn+1(x) - Pnfl(x)}]
_ 1 P, (D=1
T on+1 P19 =P,y (). and P,_;(D=1

1 . 3 . 1
8C2n-1 4@n+1 8(2n+3)

1
Example 29. Prove that: J 1x2Pnz dx =

Sol. From Recurrence relation (1),
@n+ DxP,=m+1)P
Squaring both sides, we get
@Cn+1)?x*P 2=+ 1)?*P2  +n?P?  +2nmn+1)P, P
Integrating w.r.t. x between limits — 1 to 1, we get

+nP,

n+l 1

n+l

1 1 1 1
@n+ 1) j 2P dr =+ 1) j PZydutn’ j P2 du+2n(n+ ) j P, 1P,y

=m+ 12, 2 +n?. 2 +
[2(n+ 1)+ 1] [2(n—1) + 1]
) n+1D%* n?
P?dx = +
- L T T o )% | 2n+3  2n-1

_ 1 + 3 + 1
T 82n-1) 4(2n+1 8(2n+3)

(on resolving into partial fractions)

Example 30. Show that: jl xP,(x) P, ,(x)dx = _2n
S an? -1
Sol. Recurrence relation (1) is
nP,=Cn-H)xP,  —-m-1)P, , ..(D
From (1), xP, ;= on_1 P, +m-1P, ]

1
Therefore, j len (x) P, _1(x) dx

1 1
- n — 1-|.—1[nPn2 + (n - 1) Pn Pn—z] dx
_ n 2 .
=3 - (2 1) | Using orthogonal property
n- n+
2n
4n? -1

220  Self-Instructional Material



1
Example 31. Prove that: J [Pn’(x)]2 dx=nn+1).
~1
1
Sol. j [P,” ()12 dx
-1

_ Jll[(Zn— DP, ,+@n-5)P, s +@n-9P, , +..1%dx

| By Cristoffel’'s expansion formula

1 1 1
- j (@n- 12 P2, 1 dx +j @n ~5)2 P2, 3 dx+j (@n 92 P2%, s5dx+..

1 1
+2 j [(@n-D@n-5P,. Pn_3dx+zj (@n-D@n-9P, P, sdr+..

2 0 2
—On_12 ————+@n-5%. —=
e N TP I LU Yy
2
_0\2
+(@2n-9) '2(n—5)+1+ ...... +0+0+0+
| By orthogonal properties
2
— (2n— 1) +(2n-5)%. +(@2n-9)2.
@n =1 5 g+ @ g e @9 e
=2[C2n-D+@Cn-5)+@2n—-9) + ...+ 1]
Here l=a+N-1d
1
1=@n-D+N-1) (4 = Nzn;
. . n+1
No. Of terms 1n above series = 9
Sn+1=2.%(n;1J [Cn—-1 +1]=nmn+1) Snzg(a+l)

2

1
Hence, J 1[Pn’(ac)]2 dx =nn + 1).

Example 32. Prove that (1 — 2xz + z2)"1/2 is a solution of the equation

0° 0 5. OV
= Zla-£2) 2 =
2822(ZV)+ax[( x)ax} 0.

oo

Sol. We have, v=(1-2xz+2%) 2= 2 2"P,(x) or av= 2 2"P (%)

n=0 n=0
2 (=)
za—z(zv)= 2(n+ Dnz"P (x) (D
0z n=0
aV S n ’
Also, gzn;z P, (x)
0 9 ov 0 9 - n ,
Zda-xH == a- P
o {(1 g )ax} ox [(1 * )zfoz n (x)}
=(1-2) Y 2"P/(x)-2x Y, 2" P (%) ()
n=0 n=0
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2.

Substituting in LHS of the given equation, we have

Y [+ Dzt P ) + (1—a?) 2" P/(¥) — 22" P /()]

n=0
2 2 [(1-x) P7 (@) —2¢ P/ () + n(n + 1) P,®)]
6 | = P, (v)is a solution of Legendre’s equation
EXERCISE
Show that:
@ﬁzl%uﬂz%u) (mﬁzggungﬂm

1) &5 = [P5 (%) + — P3 (x) + — P1 (x):'

Express the followmg in terms of Legendre’s polynomials:

@O 1+x—a2 @) x*+3x° — x>+ 5x—2
@) 5x’ + x Gv) x* —Bx2+6x+1
(V) 4x° —2x%2—-3x+ 8 L) x*+ 223+ 242 —x -3

(it) 2x% +2x%2 —x—3
Expand x* — 32? + xin a series of the form XC P, (x).

Expand f(x) in a series of Legendre polynomials if f(x) = 0, —lsx< O}

2¢+1, O<x<1
Obtain the Fourier-Legendre expansion of f(x) defined as

0, —-1<x<0
fe =1 O<x<&'

Express the function f(x) = 0, -l<xs< 0} in Fourier-Legendre expansion.

x2, O<x<1

. . .
Expand f (x) = cos X in Fourier-Legendre series.

2
Prove that:
el 1 . ! 16
® J:) Py, (x) Py, 1 (%) dx = J:) Py, (x) Py, 1 (%) dx @) J_ 2x6 Py(x) dx = 531
1
(iti) jo P, .1 (x)dx =(-1)".
Prove that:
-l N 2
= P 0 2 -2
(i) jo P de=— P, O (ii) j_ng @)=~
1 1
@1) J P, 1P, 1(®)dx=nn-1 (@iv) j Py, (x)dx =0
-1 0
Answers
2
(l) = Po@ + P (x) - P 5(®)
@) —=P,(x) + = P (x) ——P (x) +—P (x )—%P NES) G11) 2P, (x) + 4P, (x)
35 4 3 2 1x 105 3\ v

(iv) P , () — 0 P2 (x) +—P1 (x) — P NEY)



Legendre's Differential
(U) e P 0@ - — P @ - = PQ(Y) +— P3(x) Equations Solutions

i) 52 P4(x) +2 P3(x) +ﬂ Py(x) + = Pl(x) _%‘5‘ Py (x)
NOTES

(Vi) P(x)+fP(x)+ P(x)—fPO(x)

4 10 8 7 5 7
—gPo(x)+P1(x)—7P2(x)+£P4(x) 4P(x)+ P+ Pz(x) 6P3(x)+-~
1

7 1 3 1 7
SP@+ P1<x> Tela +- 6. 5 P+ 5 P+ g Pa®@ + 2 P+

cos == 0.6366 P, - 0.6871 P, + .0518 P, — .0013 P, + -
2

Self-Instructional Material 223



Ordinary Differential
Equations

NOTES

7. BESSEL’S DIFFERENTIAL
EQUATION

STRUCTURE

Introduction

Solution of Bessel's equation

Series Representation of Bessel functions
Recurrence Relations for J, (x)
Generating function for Jn(x)

Integral Form of Bessel Function
Equations Reducible to Bessel’'s Equation
Modified Bessel's Equation

BER and BEI Functions

Orthogonality of Bessel Functions

Fourier-Bessel Expansion of F(x)

INTRODUCTION

The differential equation

d’y dy
=5 t+tx—+@x*-ndy=0
2 d (x* —n)y
is called Bessel's differential equation of order n, where n is a positive constant.

This equation can also be put in the form

d dy 9 9
X—|x—=|+®*—n =0
xdx (x dxj (=n9y

The particular solutions of this equation are called Bessel's functions of order n.

SOLUTION OF BESSEL’S EQUATION

Bessel's equation is

d? d
x2gg+xd—z+(x2—n2)y=0 (1)
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and

or

or

of x

d* d
Comparing equation (1) with the form d_g + P(x)d—z +Q(x) y =0, we get
x

Px) = 1 and Qx) =1 - n_z
x x
At x =0, both P(x) and Q(x) are not analytic .. x=0is a singular point.
Also, xP(x) = 1 and x? Q(x) = 1% — n?
Since both xP(x) and x? Q(x) are analytic at x =0
x = 01s a regular singular point.

Assume y = Z ay xmrk
k=0
dy N m+k-1
Then, == Z (m+k)a,x
x
k=0

2
Substituting for y, ﬂand d g
dx dx

in (1), we get

x2 2 (m+k)(m+k-Da,x™ "% +x 2 (m+k)a,x™*1

m+k
+ (x2 —n?) z ay X =0

Z[(m+k)2_(m+k)+(m+k)— akx +Zaxm+k+2:0
k=0

2[(m+k)2—n a, x™ +2a x™TR2
k=0
The lowest power of x is x™ corresponding to k = 0. Equating to zero the coefficient

m we get the indicial equation

m? —n?=0, since q,#0 whencem =+n
Equating to zero the coefficient of next term i.e., x*!, we get
[(m + 1)?* —n%a, =0
= a,=0,since m+ 1)?—n?#0form==+n
Equating to zero the coefficient of ™2 we get the recurrence relation
[(m+k+2)2-n?la,,,+a,=0

or Apig = — -
m-n+k+2)(m+n+k+2)
Putting k=1, 3, 5, ... ,wegeta,=a,=a,=.... =0
Putting k=0, 2, 4, ..... , we get
_ Qo
a,=—
m-n+2)(m+n+2)
a.=— Qg _ Q9
Y m-n+dmin+d) m-n+dmin+dm-n+2)(m+n+2)
and so on.

Bessel s Differential
Equation

NOTES
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J,(x).

which
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T m+22%-n% [(m+27?-n?llm+4)?-n?|

2 4
y = {1 z ad —} e)

Depending upon the values of n, we get different types of solutions.

Case 1. When n # 0 or n # an integer.
In this case, we get two independent solutions for m =n and m = —n.
For m = n, we get

2 4
yl = aoxn _ x + X — ceenes
202n+2) 2-4(2n+2)(2n+4)

2 4
= a " {1+(—1)12’C—+(—1)2 . ad +}
2°()'(n+1) 2°(2) 1 (n+1)(n+2)

- - D* .
0 A R (it D+ D) (R

o D'+ 4
= q, " G
= AT ,gozzk.k!r(mkn)x ©

Replacing n by —n, the second independent solution corresponding to m = —n is

oo

-1)*I'(-n+1
y2:a0x"2 D Tn+D) x 2k

.4
= 2% (R)IT(-n+k+1) @
The complete solution of equation (1) is y = ¢,y, + ¢,Y,
Since q, is arbitrary, we can choose it in any manner.
1
Choose a, = —————, then (3) takes the form
2"T(n+1
Y- 2" i (- 1)k I'(n+1) x2k B i (_1)k (zjnﬂk
Y2'T(n+1) A 2% RIT (n+k+1) = (R)IT(n +k+1)\ 2

This is called Bessel function of the first kind of order n and is denoted by

Thus,
. oo (_ 1)k (x)n+2k
900 = kzo B IT(n+k+ 1\ 2
The solution corresponding to m = —n is
oo (_ 1)k (QCJ_n+2k
I () = kzo "B)ITCn+k+D |2
is called Bessel function of the first kind of order - n.

When n is not an integer, J__ (x) is distinct from J_ (x). Hence the complete solution

of the Bessel's equation may be expressed as

y=Ad (x) + BJ (xv) | , where A and B are arbitrary constants.




Case II. When n =0, the Bessel's equation (1) takes the form

d%y dy
.—+—+
dx?  dx xy =0.

This is called Bessel’s equation of order zero.

The two roots of the indicial equation are equal, each = 0.

From equation (2), putting n = 0, we have (assuming a, = 1)
2 4 6

X X X

=4m|] - i T
y=v M2 M2l midE mi2Pmidimi6)?

which is a solution if m = 0.
The first solution is given by

( 1)k 2k
Jox) = 2 B2 (—J , sincel'(k+1)=Fk!

which 1s Bessel function of the first kind of order zero.

2 4
Now, aa—yzx’" logx[l— X + ad — e :|

m (m+2)?2 (m+2)2%m+4)>

x? 2 x? 2 2
+xm 5 - — 5 B + 4 eeeeen
m+2)7° m+2 (m+2°m+4) m+2 m+4

)
The second independent solution is given by (_yj
om m=0
1, 1 1) . 1 1 1) ¢
= -—|1+= + " 1+=+= — e
= J,(x) log ’C+|:22 92 42 ( 2)’6 92 42 g2 ( 9 3)’6 :|

=J 1 (ﬁjz — 1 (]_4.1) (£)4 + 1 (]_ +l+lj (£j6 — eeeee
- 0(”) og x + 2 (2!)2 27119 (3‘)2 2 38)\2

(—1)k+ 1 1 1))
—Jo(x)logx+2 T (1+§+§+ ...... +%)(§)

k=1
It is denoted by Y, (x) and is called Bessel function of the second kind of
order zero or Neumann function.

Thus the complete solution of the Bessel's equation of order zero is

y=Ady(x) + BY (x)

Case III. When n is an integer, the two functions J (x) and J_ (x) are not

independent but are connected by the relation
J_, @) =D J,(x).

Now, when n is an integer, y, fails to give a solution for positive values of n and
y, fails to give a solution for negative values of n. Let us find an independent solution
of Bessel's equation (1), when n is an integer.

Let y = u(x) J, (x) be a solution of (1) when n is integral.
dy d’y

s ’ _” I 4 ”
—=u'd, +ud;, and —F=u"d, +2/J), +ud;

Then
dx dx

Bessel s Differential
Equation

NOTES
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Ordinary Differential dy d? y
Equations Substituting the values of y, Ix and T2 in (1), we get
x x
@I+ 2+ ud”) @I +ud)+ (@ —nPHud =0
NOTES or ule?d” + xd '+ (2 —n?dJ |+ x2uJ + 2000+ au'd, =0
or x?u”d + 2x%u/d + vu'J, =0 since J is a solution of (1).
Dividing throughout by x?u’J , we get
u” J7, 1
+2-1 =0
u dJ x

n

Integrating w.r.t. x, we get
log (w'J 2x) =log B

or u'd 2x=B
B

or u'=— or 11—Bj—+A
xd;,

Substituting the value of u in the assumed solution y = u(x) J, (x), we have

dx
=|B A
y { JxJ 7" }J(r)

n

or y=AJ (@ +BY (¥), where Y (@) =dJ @ _[ Jz( )
The function Y, (v) is called the Bessel function of the second kind of order
n or Neumann function.

oo

SERIES REPRESENTATION OF BESSEL FUNCTIONS
. - p*
Since J, (x) = Z

n+2k
x
R'T(n+k+1) 2)

(-DF ([« (-DF (x)*
Jo(®) = Z k'F(k+1)(§) k A (k1)? (5) v T+ D=kl

5 a3 s
1= + - —_ - 4 oeeenes
2) @nr\2) @n?\2

x? x* x®

22 92 42 922 42 6
| ) i (_1)k 2 1+2k _ i (_1)k (£J1+2k
W= 2 BT+ 2)\ 2 o R+ 2

_x 1 X 3 1 («x > x %8 x®
 — 4+ — P - — + e
T2 all2 2131 2 2 92.4 9%2.4%2.4

In particular, J (0) = 1 and J,(0) = 0

The values of J,(x) and J, (x) are given in ‘Jahnke Emde’s tables’ to four decimal
places at intervals of 0.1.
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RECURRENCE RELATIONS FOR J (x)

[ r—
xd,/=nd,-xdJ,,

We know that,

J _i (_1)r £n+2r
no riTn+r+1\2

r=0
Differentiating w.r.t. x, we get

J’_ i (_1)7‘ (n+2r) l 2 n+2r-1
”_r=0 riTn+r+1 22
Multiplying both sides by x and breaking it into two terms

xJ’ l 2 ( 1)r x n+2r o i (_1)r . n+2r-1
= ; fadl
r'Tn+r+1 2 r=1(r—1)!1"n+r+1 2

1s+1 n+2s+1

(n+1)+2s
(-1)° x
=nd, —
- xz siTn+s+2.2

= xd =nd —xd (1)

xJ,)=-nd, +xdJ,

We know that
SN D 2 (2} i (-1 @n+2r-n) ()"
x"_r=0 rifn+r+1 { 2 _r=0 riTn+r+1 2

=3

L Z (_1)r 2 n+2r ‘s i (_1)r (n+r) 2 n+2r-1
/r 0r‘Fn+r+1 2 ’ r=0r!Fn+r+1 2

=0
n-1+2r
_ (-1)" x
=-nd, * Zr‘l"(n 1)+r+1(2)
xJ =-nd +xd | ..(2)
2d,=d, 1~ Jdun
Adding equations (1) and (2), we get
ZxJn’ =X (Jn—l - Jn+1)

= 2Jn’ = Jn—l - Jn+1 (3)

Self-Instructional Material
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2nd, =xJ, , +dJ,.,)

Subtracting (2) from (1), we get
0=2nd,—xdJ, ,—xJ
= 2nd, =xJ, ,+dJ,.) ..(4)

d
2 ) E-x g

Multiplying eqn. (1) by x™1, we get
x g =t —xd

—n T’ —n—1 — —n
= xtd -t ond, =—x"d

n

+1

d
@)=t _e)

d
dx «"dJ)=x"dJ,

Multiplying eqn. (2) by ™, we get
ard/=—nxmtd +and

= arJ At o =and
= % rd)=x"d ...(6)
SOLVED EXAMPLES

Example 1. Prove that: J ,(x) =(-1)" J (x).

Sol. Since I'- p is infinity (p > 0), we get terms in J_ (x) equal to zero till
n > 1 so that the series begins when r>n

Hence we can write,

=

(_1),« x -n+2r
I, ()= Z r!F—n+r+1(§J

r=n

Putting r=n + s, we get

oo (_1)n+s x n+2s
T,0= 2 (n+s)!rs+1(§)

s=0
EUIE C V AN 0 S o ) L O L
=0 X G 3] - 2 (3
= J ., @ ==D"d (x).
Example 2. Prove that: J, (x) =—J, (x).
Sol. We know that % v @ =—x"d (%)
, _ d _ Loy —
Putting n =0, we get I [J, ()] =—dJ; ) = JJ) =—J, ).



Example 3. Prove that:

Bessel s Differential

Equation
. 2 .. 2
1) J,,(x)=,|—si 1) J ,(x)=,]— .
() ]/2() - Sin xX ( ) 7]/2() - coS X
Sol. We know that, NOTES
n 2 4
J@)=—— |11 & e (D)
" 2"Tn +1 22n+2) 2-4-2n+2)(2n+4)
1
() Putting n = 2 in (1),
J - i 1- ﬁ + ﬁ —
1@ = Brae |t 3 T
«/; 1 x® B 2 .
=—1 = x—§+;—--- =.,[—sinx
. . 1.
(1) Putting n = — 2 in (1),
-2 2 4
__x I N R
J_y () = o 12 [y (1 YRV J = 05
Example 4. Prove that:
d
—J 2w) +J% (0] =2 [EJ,f (x) — n+l iy (x)}
dx x
Sol. LHS=2J J/ +2J ., J ., (D
But xJ =nd, —xJ | Recurrence relation (1)
, n
Jn—;Jn—Jn+1 (2
and also, xJ =—nd +xJ | Recurrence relation (2)
Jn’:_ﬁJn+ Jn—l
x
n+1
or J’n+1=—( . ) J o t+d, . (3)
Substituting these values of J” and J’ ., from (2) and (3) in eqn. (1), we get
LHS =2J (ﬁ J, - Jn+1)+2Jn+1 (— ntly 4 Jn)
x x
=9l g2 —2(”—”)J2n+1 = RHS
X x
Hence the result.
Example 5. Prove that:
. 2 (sinx .. 2 (—cosx .
J X) = |— — J x) = .]— — .
@) J,,4(x) ‘,T[x ( " cosx) @) J _,,,(x) 1’1‘[x ( " smx)
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Sol. By Recurrence relation (4), we have
2nd () =x[J () +J )]

2n
= J, () = ~ J, ) —dJ, @
() Putting n = 1/2 in (2), we get

1
Jgjg(0) = > Jyjp(¥) = d (%)

2 [sinx ]
- = —cos x

w | x
(1) From equation (1),

2n
Tua (@) =, =, @)
Putting n = — 1/2 in (3), we get

1
J gp(®) =— x J () = dy (%)

2[—cosx . }
= —_— —Sin x

™ X

[2|(3-%7
Example 6. Prove that: J;,, (x) = p— K 2x

X

Sol. From Recurrence relation (4),
2nd (x) =x[J, ;) +dJ ., @]

2n
= Jn+1(x)=7Jn(x)—Jn71(x)
Putting n = 1/2, 3/2 in (1), we get

1
Jyjy () = % Jijg @) —d_ 15 (¥)

3
Jgjg () = " Jajg () = dyg ()
From (2) and (3),

3|1
J5/2 (x) = ;[;JI/Z (x)—dJ_ 1/2 (x)} - J1/2 (%)

3 3 3-x2
X2 1 Jyg () — % J 1y ()= 52

2 {(3—%] . 3 }
N 5— |sinx—— cosx |
™ X X

48

Example 7. Prove that: J , (x) = (x_S

—§)J1 (x)+(1—
X

(D)
(2

| Using results of Ex. 3

. (3)

| Using results of Ex. 3

. 3 cos x
sin x —
X

(1)

(2

. (3)

J{2 ) 3 [2
—Smx——.,[—COS X
T X T

2w,

Hence or otherwise find J ;(x) in terms of J ,(x) and J ,(x).

Sol. From Recurrence relation (4),
2nd, ) =x[J, [ @+dJ, ., @]

2n
= Jn+1(x)=7Jn(x)—Jn71(x)

(1)



Putting n =1, 2, 3 in eqn. (1), we get Bessel's Differential

1 Equation

J, (¥) = ” [2d, (x) —xd, (0] ..(2)

J, (¥) = % [4d, (x) —xd; (¥)] ..(3) NOTES
1

J,x) = < [6d, (x) —xd, (¥)] ..(4)

From (2) and (3),

I, 0= 3 @-23@-J, @
X X

.2
= (S—fJ I, 0-23,0 6
x x
Again from (4) and (5),

_ 2
J, (0= (48 Bx JJl(x) 2 @ -23, 0+ do ()
X X X
z(i—i—%)Jl(xH(l—i—;l)Jo(x) ®)
Again, putting n =4, 5 in eqn. (1), we get
8
JW=— 0,0~y W (D
10
5@ =~ J5 )~ 1,0 ~®

From (7) and (8),

Jy0) = E[§J4<x) - Jg(x)} ~J, @
X X
80 10
= (x—z— 1) J4(x)—7 JS (x)

- (i_g— 1) [(i—?—%) Jq(x) +(1—i—3}10(x)}

10 [(x% - 1) Jq(x) - % Jo(x)} | Using eqn. (5) and

X

(6)
3840 768 18 144 1920
= e N e S R
2

Example 8. Prove that: ng () dx+dJy (x)+ S J; (x) =0.
Sol. We know that,

d

a [xin Jn (X')] =—x" Jn +1 (X')
g @de =, @ )
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Now, j Jy () dx = j 2% [x 2 Jy ()] da
=¥ bty @1 - [ 20272y ] d
=—J, @) + 2 j 21 I, (v)dx
=, 2, @1 =, - 2, @

[ @adr+a, (x)+%J1 ) = 0.

Example 9. Proce that: [ xJ3 () dx =éx2 T2 (o) + 2 @] +c.

2 2
Sol. j 22 (x) dx = J2 (x).%—'[ 2J4(x) Jp (x).%dx+c

2
=T - [ 3@ g @hdsre 1o 950 =, @]
.’)CZ 2
= ?Jo (x)+'[ xd1(x) . xdy (x)dx +c
2
= % J2 (x) + j xJ,(x). % [xJ, (0] dx + ¢
| Using Recurrence relation
2 2 2
= %JS () + L@ =%[J§ x)+J% ()] +ec.

Example 10. Prove that: 4J,7(x)=J, ,(x)-2J (x)+J . ,(x)
Sol. From Recurrence relation (3), we have

2, =d, 1 =d,., (D)
Differentiating, 2J”=J" |, —-J

4J7=2J =23 . =0, ,—J)—-,~d ., | Using (1)
= 4J7=d ,—2J +J

n+2
Example 11. Prove that: 4J;” (x) + 3,/ (x) +J, (x) = 0.
Sol.We know that
Jg=—4dJ;
. . . 1
Differentiating gives, J==-dJ/=- 2 Jo—dy)
[By Recurrence relation 2J "=dJ,  —dJ ]
‘ . . L1 1. 11
Differentiating again, dJ,” =— 2 o —d,)=—- 2 Jo + 239 [J, —d.]
11 1 11 1 )
__EJO+ZJ1_ZJ3:_§J0_ZJ0_ZJ3 e Jy==dg
3, 1
T Jo — 4 Jy
= 4] + 3d, +d,=0.



d
Example 12. Prove that: In [ (x)J ., ()] =x[]%x)-J° ., (x)]

Sol. LHS:%[x_” J, ). x" 1T, (@]
d

—e g @ LT, @l T, @S T, ()
n dx dx
=x"d @ -2t @+t L @[ d L )]
d , , .
|- a(x ) =a"d
=xJ 2()—xd? ., =x[J 2@ —-J% ,,]=RHS.

Example 13. Prove that: lim I (%) = ! 7 s (m>-1).
+

x>0 x" 2"Tn

Sol. We know that:

x" 1 x2 + xt
J"(x)_znl“n+1 2-2n+2) 2-4-2n+2)(2n+4)

2 4
tim 228 _ piy 1 {1 = . }
x>0 5" x=>092"T'n+1

T2 212 24 2nt2@mid)

- 1
C2"Tn+1’

Example 14. Prove that: J,/ (x) = (1 - 12) Ji(x)+ £ Jo(x).
x x

Sol. By Recurrence relation (2), we have

xJ/ =—nd +xJ ..(D
Putting n = 2, X =—2J,+ x|
2
= J2’=—;J2+ J, (2

By Recurrence relation (1), we have
xJ =nd —xJ ..(3)
From (1) and (3), we have
-nd +xd, [ =nd —xJ
Puttingn=1, —dJ, +xd,=dJ;, —xd,

n+1

2
= J2=;Jl—JO ..(4)
2(2 4 2
From (2), Jg x(x Jq J0)+J1 ( xz) 1+ <.

Example 15. Prove that:

2
Jn+3+Jn+5:; (”/+4)Jn+4'

Sol. By Recurrence relation (4), we have
2nd =xJ, +dJ, .
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Replacing n by n + 4, we get
2
x O+, =t

Example 16. Prove that -J, (x) = 0 has no repeated root except at x = 0.
Sol. Suppose, if possible, o is a double root of J, (x) =0
Then, J, (=0 and J’ (=0 (D)

From Recurrence relations, we know that
n
J, i1 (x):; J, (x) —dJ (x)

Ty =70, W

Using (1), weget J ., (=0 and J,  , (@)=0

which is inadmissible as power series cannot have the same sum function.

Hence J (x) has no repeated root except x=0.

Example 17. Prove that:

) =mf-n-x?)J (x)+xJ ., (x);n=01 2
Sol. We have

¥/=nd —xJ . (1) |ByRR. (1)
Diff., W7 d = nd —xd L —d
= J’=m-Dxd —a?J  —xd (2
By Recurrence relation (2),
xJ =—nd +xJ,

= )  =—@m+DJ .3

From (2), 2J’=m—- D —xd J-x[-@m+DJ . +xd ]-ad
= ?Jd’=m-n—-aHd +xd ..

Example 18. Prove that: %Jn =m+Dd,,  -M+3)d g+ (M +E)d, 5 —

Sol. By Recurrence relation (4), we have
2nd, =xJ, +dJ, .

= 2+ Dd, =x,+d ) | Replacing n by (n + 1)
x x

= EJn :(n+1)Jn+1_§Jn+2 (1)
x x

= EJn+2 = (n+3)Jn+3 _EJn+4 (2)

From (1) and (2),

an:(n+1)Jn+1—(n+3)Jn+3+an+4

Continuing this way,

%Jn =+ DT~ +3)d, s+ +5), s — e



1 Bessel's Differential

Example 19. Ifn > 1, show that: -[o x ", (0)dx = m -x " d, (). Equation
Sol. We know that,
d . _ _
In ™", Wl=-x"dJd,,1 @ | Recurrence relation NOTES

Integrating it between 0 and x, we get

x _ x J, )

j " T @de==[x""J, @] =—x"J )+ Lt [—n]
0 0 n x—0 X
=—x"d, () + ;
2"Tn+1

2|n
Example 20. Prove that: .J = - [—

2Jﬁ—h+2JM2+M+QJM1— ------ }.

Sol. From Recurrence formula (2), we have

Jn’: _ﬁJn +Jn—1
x
n 2 .
=——dJd,+—[nd,-(n+2)J,,9+-] | Using
x x
example 18
2| n

X

= —[EJn ~(n+2)d,, +}

GENERATING FUNCTION FOR J_(x)

x 1
x(,_1
The function e? ( i ) is called generating function.
Prove that
x (z - 1) >
0 SIS R
p—

x 1
le., J, (x) is the coefficient of 2" in the expansion of ez( z )

(ii) eg(zé) - i D", 0z "

n=-—oo

H-2)

e, (—1)"dJ, (x)is the coefficient of 2 in the expansion of e?

Note. Above results are true if n is an integer.

Proof. We have,

f%_l) 2z x
2 z 2 2z
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Equations
(= ni_ x n+2 ;-{_ x n+4 ; i_{_
2) n! \2 (n+1D! \ 2 (n+2)! 2!

r n+2r
_ 2 L (fj =J
— rl(n+r)! n
(1) Coeff. of z™in this product

)" 1 "1 1 1
|- === ) +|-= ) —Fnn,
( 2) n! ( 2) (n+ 1! ( 2) n+2)! 2!

=

n —(_ 1)r x e n
=D 2;1) rln+r)!\2 =Dt

NOTES

INTEGRAL FORM OF BESSEL FUNCTION

We know that e? ( 7) z t"d, (x)

=d, @+t () + 12, (x) + 5, () + - M @2, ()R ()
=do @)+ td, () + 2, (¥) + 3, (x) + — M @)+ 2, () — 3, () + e
[ J,®=D"d, @]
1
=J (x)+(t——)J (x)+(t + )J (x)+( —t—3)J3(x)+ ~~~~~~ .1

Put{=cos0+1sin0

. 1 ..
t"=cosnd+isinnd and —- =cos no —1sin nod
t
| By De-Moivre’s theorem
1 1
so that t" +t_ 2cosn® and t" _t_ 21 sin nd

Substituting these values in (1), we have
esin = J (x) + 2 sin 0J (x) + 2 cos 20 J, (x) + 3i sin 30 J, (x) + -

..(2)
Since e™si" 9= cos (x sin 0) + i sin (x sin 6)
Equating the real and imaginary parts in (2), we get
cos (x sin 0) = J ) (x) + 2[J, (x) cos 20 + J, (x) cos 40 + == 1 ..(3)
sin (x sin 0) = 2[J; (x) sin 0 + J,; (x) sin 30 + === 1 ..(4)

These are known as Jacobi series.

Multiplying both sides of (3) by cos n6 and integrating w.r.t. 6 between the
Limits 0 and © (when n is odd, all terms on the RHS vanish; when n is even, all terms
on the RHS except the one containing cos n6 vanish), we get

0, when n is odd

jo cos (x sin 0) cos n6 d6 = {n T (x), when n is even
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Similarly, multiplying (4) by sin n6 and integrating w.r.t. 6 between the limits
0 and &, we get

nJ,, (x), when n is odd

T
J sin (x sin 0) sin n6 dO = .
0 0, when 7 is even

T
Adding, we get jo [cos (x sin 0) cos 0 + sin (x sin 0) sin n6] dO = 1tJ (x)

= J ()= % J:cos (n0—-xsin0)dO for all integral values of n.
SOLVED EXAMPLES
Example 21. Use Jacobi series to prove that
[Jo (x)]2 + 2[J] (x)]2 + 2[J2 (x)]2 + 2[J3 (x)]2 o =1
Sol. The Jacobi series are
Jo () + 2J, (x) cos 20 + 2J, (x) cos 40 + - = cos (x sin 0) ..(D
and 2J, (x) sin 0 + 2dJ, (x) sin 30 + - = gin (x sin 0) ..(2)

Squaring (1) and (2) and integrating w.r.t. © between the limits 0 and «, and
remembering that if m, n are integers then

T T
J cos? n0do = J sin? n0do = r
0 0 2

and Joncos mb6 cos nb do = J‘Onsin m0sinnbdb =0, m # n, we get
T
[0, ]2 7+ 2[0, @ 7+ 20, @2+ - = jo cos? (x sin 0) dO
20, WP m+ 20, @27+ e = jo“ sin? (x sin 0) d0

Adding, we have 7t{[J, ()]? + 2[J; ()] + 2[J,()]* + -}
_ Jon [cos? (x sin 0) + sin? (x sin 0)] dO = jonde -
[Jo @] + 2[J; @)]* + 2[J,()]* + - =1.
Example 22. Prove that: J, (x) = % j:cos (x cos ) do.

Sol. We know that

1

1
e '2( z) =J, +(z—l)J1 +(z2 +%)J2 +(23 —%)JS + o (1)
z z z

. . 1 .
Putting z = ¢ so that P e 0

1 1
and z2+—=2co0s0; z—;=2isin6,
z
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Eqgn. (1) becomes,

e™ S0 = J o +(2isin0)J; +(2cos 20) I, +(2isin 30) J; + (2 cos 40) J,
Equating real parts,

cos (x sin 0) =dJ, + 2 cos 20 J, + 2 cos 40 J, +

T
Putting 6 = 3 + 0 in (2), we get

cos (x cos ¢) =d, + 2 cos (T + 2¢)J, +2(:0s4( ¢)

— JO + (— 2 cos 2¢) J2 + (2 cos 4¢)J4 o

.[o cos(x cosp)dd=4d, .[o do—2d, .[o cos 20d + 2J .[o cosdopdp —--

Jo = % J:cos (xcos ) do.

EXERCISE A

Show that:

‘ ) PRER 3 -2
(@) Iy, ) =J_,, (%) cot x @) J gy )=\ |7 T T2 |57

@ii1) [Ty 017 + [Ty @] =

_2
X
(1) Jo () = \/7{[15 bx ] cos x}

Show that:

‘ 1 .. " ,
i) Jy" =5 Ty=J) (i) J,=d) —x1d,

dg 1 dy” . ,
(€222) I, =2 Jo ) J,)" ) =-d (x)+ J ().
Prove that:
d
Olrw [x”J (@)l =ax"J, | (ax) (i) == [J2 ()] = % 2 -1(0) - J% 41 @),
Prove that

0 J Jo () J; () doc = - % Jo2 ()

i j J4x(x) == Iy () - xiz Jy (@) (iv) j Js (0) dx = — Iy (x) = % Jy () - x% Jy (x)

) j x3 I ) dx =23 Jq () - 222 Iy (x)

Giy [ 22 Jo (03, () dx = % 2 I2 @

o o
i) jo x Jo () dv = 91 ().
Prove that:

1 (2n
@ dJ ()= —J cos (x sin 6 — n6) db
n 2n Jo

(i1) cos x = — 2, + 2 — o ;osinx=2J, -2, + 2 — o

[Hint: Put 6 = n/2 in Jacobi series]

nd,



(117) cos (x cos 0) =dJ, — 2J, cos 20 + 2J, cos 40 — -+~
sin (x cos 0) = 2J, cos 8 — 2J, cos 30 + 2J, cos 50 —

n
[Hint: Replace 6 by (E - 9} in Jacobi series]

1" 9 (n/2 9 (n/2
(V) Iy (¥) = = J cos (x sin 0) dO = — J cos (x sin 0) dO = — J cos (x cos 0) dO
n Jo n Jo m Jo

/2
W) Jyg+ 2, + 20, + 2+ ... =1 (vi) jo Jra Iy (20) dx = 1.

6. Show that Bessel's function J, (x) is an even function when n is even and is an odd
function when n is odd. [Hint: J (—x) = (1" J, ()]

7. (1) Express J (x) in terms of J;, (x) and J; (x).
(i) Express J, (x) in terms of J; (x) and J, (x).
(i) Show that J,(x) = (% - 1) J,(x) - i Jo(x).
X X
8. Show that:

@) J. &% J1(x) dx = 2ud, (1) — 2%, () + ¢
) J 3 J3(@) dx = —*J, () =522 J () — 15 x J ) (x) + 15J‘ Jo(x) dx .
9. Evaluate: J. % J1(x) dx .

Answers

3840 768 18 144 1920
7. (L)J6(x)=(—5——3+—)J1(x)+(—2— - —1)Jo(x).
X X X X X

- 384 72 12 192
(i) J, (¥) = (x—4 2 1) J, (@) + (7 - x_3) I, ().

9. (8x? —xh) I (®) + (4x — 16x) I (%).

EQUATIONS REDUCIBLE TO BESSEL’S EQUATION

A number of second order differential equations with variable coefficients can be
reduced to Bessel's equation by a suitable transformation and, hence, can be solved in
terms of Bessel functions.

Consider the differential equation

x? Q + (1 - 20)x @, [B4y? &2 + (02 — n?y9)]y = 0 (D)
dx dx
where o, B, Y and n are constants.
Putting X = Ba¥ and Y = &%y, equation (1) reduces to
3}222{+X%+(X2—n2)Y:0 (2
which is Bessel's equation.

X2
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Ordinary Differential When n is not an integer, the solution of (2) is
Equations

Y=cd, (X)+c,d , (X)

and hence, the solution of (2) is

NOTES
xry=cd Bx)+c,d , BxY)

or y=x%[c,d, (Bx) + cd , (BaN)]

When n is an integer, the solution of (2) is
Y=c¢d, X)+cY, X)

and hence, the solution of (2) is

y=x%[ed, (Bah) + ¢, Y, (Bah)].

Equation (1) is a general form of Bessel's equation with o, B, vy and n as
parameters. Comparing the given equation with (1), we get specific values of the
parameters and hence the solution.

SOLVED EXAMPLES
Example 23. Solve the following differential equations in terms of Bessel
functions:
. 2 2 1 ..
@y =2y Y T Ty =0 @) xy”— 3y’ +xy = 0.

Sol. (i) The given equation is  x%y” — 2xy’+ (4x* —4)y =0
Comparing with the general form, we get
1-200=—2,B%2=4,2y=4, 0*—n¥®?=-4
i.e., a=3p=1y=2,n=2
Here n is not an integer and the solution is
y =2 e g, () + eyd g ()]
(1) Multiplying by x, the given equation becomes
x2y” —Bxy + a2y =0
Comparing with the general form, we get
1-200=—3,B%?=1,2y=202—n%*?=0
i.e., o=2,pf=y=1,n=2
Here n is integer and the solution is y = x?[c,d,, (x) + ¢,Y, )]

Example 24. Obtain in terms of Bessel functions, the solution of differential

equation
d?y ( 20)
—+|9x-— |y =0.
dx? x?
Sol. The given equation on multiplying by x? is

dzy

2 3
x°—+(9x° -20)y=0
dx? Y
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Comparing this with the standard transformed equation
¥2y”+ (1= 20) xy’ + {B42 2%+ (o — )}y = 0,

we get 1-200=0, p%¥?=9,2y=3, and o —n%*?=-20
1 3
This gives, a=g YZE,B=2,H/=3

Here n is an integer.
Hence the solution is y=+x [e,d,(2x%2) + ¢,Y,(2x%2)]

Example 25. Solve the differential equation

’ 2
n . , .
vy’ + Y 14 (x2 - x_2J y=0 in terms of Bessel’s functions.

x
Sol. The given equation is

2y +xy +4(x* -n?)y=0

Comparing with the general form, we get

1-2a=1

pH? =4

2y=414

o —m?y? =—4n?
From (2), a=0
From (4), y=2
From (3), B?=1 = pB=1

From (5), 0—m? 4)=—4n? = m=n

when n is not an integer, solution to (1) is
y=x%[e; d, BaY) + e, (Ba]
=0, d () + e, @H]=c,d @)+ e, (x?)
when n is an integer, solution to (1) is
y =2, d,, (Bt + ey, (Bah)]
=0 e, d, () +¢,Y, @A) =c,d, %) +c,Y, ().

(1)

(2
(3
(4
..(5)

Bessel s Differential

Equation

NOTES

MODIFIED BESSEL’S EQUATION

. d* d
The differential equation x> —g + 22 (2% +n?) y=0
dx dx
is called modified Bessel's equation of order n.
2
Equation (1) can be re-written as x2 d_g/ + x% +@%x%-n?)y=0
X X
When 7 is not an integer, its solution is given by y = ¢,J, (ix) + ¢,J , (ix)

| G
Now, 4,0 = 2 4Gy kv D 2

> 1 x n+2k
=i" ) - o (1) () 2k = 2k 2k = k=
=t 2 k!l—‘(n+k+1)(2j [« D@ =r". 1" =1 1]

r=0

(1)
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s n+2k
Equations The series ];::0 m (gj is a real function with all terms positive.
It is denoted by I, (x) and is called the modified Bessel function of the first kind
NOTES of order n.
Thus, L)=1"J (@x)

Since i " is a constant, I (v) is also a solution of (1).
If n is not an integer, a second independent solution of (1) is I  (x),

=

1 -n+2k
where 1 (v)= r; EIT (—n+k+1) (EJ

Thus, if n is not an integer, the complete solution of (1) is given by

Y= CIIn (X') + C2I—n (X')
If n is a non-zero integer, a second independent solution of (1) is given by

n/2

K, @)= r L, ®-d, 0]

and 1s called modified Bessel function of second kind of order n.

In this case, the complete solution of (1) is given by
y=cl @ +c,K (x).

BER AND BEI FUNCTIONS

2
Consider the differential equation x% + % —ixy=0 (1)
x x

Comparing it with equation (1) of Art. 4.7, we have
a=0,n=0,y=1landB?=-1 or B2=i® sothat PB=i2
Hence a solution of (1) is given by J, (%2 x)

1312

Replacing x by i*" x in the series for J (x), we have

i3x2+ i6x4 ~ i9x6 . i12x8 ~
22 (2n%.2* (3n%.26 (41?28

_lh x* x®
e T e
N S S _
2% 2%.4%.67 2%2.47.6%-8%-107
Thus J, (% x) is a complex function for real values of x. The real and the

imaginary parts are denoted by ber (x) (Bessel-real) and bei (x) (Bessel-imaginary)
respectively. Thus

Jy (32 x)=1—

- (= 1)k x4
ber(x) =1+ ;122 42 .62 ....... (4k)?
S (_1)k x4k—2

and bei(x) = 1 — ;122 2267 k2

Hence a solution of (1) is y = J,(*2x) = ber (v) + i bei (x).
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Example 26. Show that:

(a) % [x ber” (x)] =— x ber (x) (b) diic [x bei” (x)] = x ber (x).
Sol. We know that:
ber (x) =1- 22x442 > .4;.862 e
bei (x) = ;—z— P zz s + YIVE -220-82 ST
(a) Now, ber’ (x) = — 2?: + o7 -4326?62 i
x ber” (x) = - 2326%4 + > -43262-362 5
diic [x ber” (x)] = —;—z+ﬁ ........
x? x© .
= —X (?—m-{—] :—xbel (%’)
(b) Also, bei’ (x)zg—22 .36:2.6+22.42.Z:82.10— ........
x bet” (x) = %— Py .x462 o + SIE -x61;)-82 ST

5 x9

d : X
’ — — +
Ix [x bel” (v)] = x 92 .42  92.42.g2.g2

- +
22.42  22.42.62 .82

4 8
:x(l x x — e szber (x).

Bessel s Differential

Equation

NOTES

ORTHOGONALITY OF BESSEL FUNCTIONS

If oo and B are the roots of J, (x) =0, then
1 T (ox). 3. (Bx)dx= 0, when o # 3
J‘O X n ox) . n Bx X = %J2n+1(a)’ Wheno(:B

Consider the Bessel's equations
2w+ xu + (022 —n?Hu=0
and 2+ x0+ B2 -nHv=0

Their solutions are u=dJ  (ox) and v =4dJ, (Bx) respectively.
Multiplying (1) by % and (2) by % and subtracting, we get
x@v—uv”) + (W —u) + (02— B xuv =0

or 4 [x(u'v — uv)] = (B2 — 0?) xuv

dx

(D)
(2
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Ordinary Differential Integrating both sides w.r.t. x between the limits 0 and 1, we get

Equations ) 1
(B? — 02 J xuv dx = [x Ww'v-—uv )} = [u'v - uv’] . (3)
0 0 x=1
NOTES Since, u=4dJ (o)
u' = diic [J, (ax)] = ﬁ(Jn (ow)] .M: o, (ox)
Similarly, v=d, Bx) = v=0J"(x
Substituting for u, v, u” and v” in (3), we get
1 ’ _ ’
jo xd, (o) I, () de = 232 (X I :362)_ Sg” @I, ® ()

If oo and B are distinct roots of J (x) =0, then d (o) =0and dJ () =0.
Hence, from (4), we have

jol xJ, (ax)J, (Bx) dx =0

0 .
However, if o = B, the value of the integral is o which is indeterminate.

To evaluate the integral, we assume that o is a root of J (x) = 0 so that J (o) =0
and B is a variable approaching o. Thus, from (4), we have

Lt leJn (o) g, () e = Lt oy (@ d, B

B—a —o Bz —o?
1 ady, (@) J, (B)
or .[0 xJ?2 (o) dx = BEta ”Z—B”B [by L-Hospital's rule]

_1 [J7(0)]? )
= g 1, o)] ...(5)

But xJ () =nd, (x) —xJ, ., )

: xJ (@) =nd, () —od, , (0)=—ad ., (@),sinced (o)=0

= Jn’ (OC) == Jn +1 (OC)

1
Hence, from (5), we get .[o xd 2 (ox) dx = % J% 1 (o)

Note. If the interval is from O to @, it can be shown that
¢ 12 a® 5
J xJn (ox) dx Z?J,H 1 (o), where o is a root ofJn (aa) = 0.
0

FOURIER-BESSEL EXPANSION OF f(x)

From the orthogonal property of Bessel functions, we can expand a function f(x) in
Fourier-Bessel series in the range 0 to a.

Let  f)=c,d, M)+, (o) + et d Q)= D 6, Ox) (1)

n-n

where A, A, ... are the roots of the equation J  (Aa) = 0.
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To determine c;, we multiply both sides of (1) by xJ (Ax) and integrate w.r.t. x
between the limits O to a. From the orthogonal property of Bessel functions, all integrals
on the right hand side will vanish except the one containing ¢, and we have

a a 2
j f (@) J, Oux) dx=c; j 23,2 Oun) dr=c¢; . 2 3% 1 (a)
0 0 2

¢, = ;J‘axf(x)J (hj%) dx
L aP IO Y0 "
Puttingi=1, 2,3, ... wecan find ¢, ¢y, ¢y, oo and hence the function f(x).
SOLVED EXAMPLES
Example 27. If o, o, ........... , o are the positive roots of J , (x) = 0, prove that
1_ o Jy(o,x)
2 &o,d; (a,)
Sol. We know that if f(x) = 2 ¢;dJ , (0;%) (D)
i=1
then =2 j xf(@)J,, (0,x) dx
’ "I i1 (o) 0 mo

Taking f(x)=1,a=1andn =0, we get

2 1 . 2 xd 4 (o)
“T I Jy w0 @) e = JZ (oci)[ o }

13

1
3 2
o; Jq (o))

0

=3

2
F 1 h 1= ———Jg(o;%)
rom (1), we have l; o J, (o) 0

=

1 Jo(anx)
or —_=

2 ~oa,di(@,)

Example 28. Show that the Fourier-Bessel series in J (A x) for f(x) =x* (0 <x <a),
where A a are positive roots of J, (x) =0, is

N N

2 — 9q2 g2 %
VI L, Iy ()

Sol. Let the Fourier-Bessel series representing f(x) = x? be given by
2= Y ey (hy)
n=1
Multiplying both sides by xJ,(A x) and integrating w.r.t. x between the limits 0
to a, we get

¢ .3 [ g2
jo x°dy (A, x)dx =c, jo xdy(h,x) dx

x3J5 (A, %) ¢ 2
or {i— =c,. % JZ (A a)

n 0
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3
¥ Js (A,@) 2
Equations 493 = 2 g2
or n, c,. 5 J3 (A,@)
. ¢ = 2a* 1
NOTES "oak, I3 ,0)
o Jy (A,x
Hence, 2 = 2a? M
et ah,ds(h,a)
EXERCISE B
1. Solve the following differential equations in terms of Bessel functions:
) xy"+y=0 @) xy’ —y + 453y =0
Gl ”+1'+4(1—i) ~0 v ~+l'+(3_ij s
Yoy )7 iy 7)Y
20 i
)y + (9 - —2) y=0. (Vi) x%y" —xy’ + 4xZy =0
x
1 1
vit) y" + —y" + (8 - x_z)y =0 (vity) 4y” + 9xy = 0
x
. 1 !
(ix) xy” +y' + —y=0 @) y” + y+(1—12jy =0
4 x Ix

2. Expand f(x) =1 over the interval 0 < x < 3 in terms of the functions J; (A x), where A are
determined by J,(31) =0

3. Ixpand f(x) = 4x — x° over the interval (0, 2) in terms of Bessel functions of first kind of
order one which satisfy the condition [J, Ax)] _,=0.

4. Ifoy, 0 o s Oy e are the positive roots of J, (x) = 0, prove that
) 1 o Jo (0,%) . Jg (0, %)
=—+4 — _a2)2 = 0 n
=% 21 0 Jg (0) =y =g-6 2 PREENPRE
5. If ais the root of the equation J, (x) = 0, show that
1 a
@) j Jy (ax) de == (i) j Jy (0 de=1
0 a 0
Answers
L ()y=xle;d; @)+ ey Y; 24l @) y=x[c)d )5 () + ey ()]
@) y=c,; J, 2x0) + ¢, Y, (2%) (W) y=c;dy, (f3x) T ¢, d 15 (/3%)
vy y= & [c1dgs (Bx) + cod o (3X)] (i) y = x[c;d; Q%) + ¢,Y (2]
i) y = ¢,dJ, (42x) + ¢, Y, (4+2x) WiiD) y = Y2 [e,d,,, () + ¢, | (3]
() y = ¢y (Jo) + .Y (Jx) @y =cdyy @) +cgd gy @
JO (}\« x) 3_ J3 (2)\« )
Zx JLGh,) 8. A= ”_Sszng @ Tt
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